期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
内蒙古荒漠草原地表风沙活动对放牧强度的响应
1
作者 刘欣雷 杜鹤强 +1 位作者 刘秀帆 范亚伟 《草业学报》 CSCD 北大核心 2023年第7期1-11,共11页
研究放牧强度对草地风沙活动的影响对深入理解风沙动力过程、准确评估和防治风沙灾害具有重要意义。本研究依托中国科学院乌拉特荒漠草原研究站,以内蒙古荒漠草原为研究区,设置两种草地类型(以草本为主的针茅草地和以灌木为主的灌丛草地... 研究放牧强度对草地风沙活动的影响对深入理解风沙动力过程、准确评估和防治风沙灾害具有重要意义。本研究依托中国科学院乌拉特荒漠草原研究站,以内蒙古荒漠草原为研究区,设置两种草地类型(以草本为主的针茅草地和以灌木为主的灌丛草地)和3种放牧强度(禁牧为对照、中度和重度放牧强度),开展了近地表风速廓线、粒径分布、风沙流结构等相关参数的测量和研究。结果表明:1)放牧强度对不同草地类型地表的空气动力学粗糙度有显著影响,且对草本区的影响大于对灌木区的影响。2)草地类型和放牧强度对地表土壤可蚀性颗粒含量的影响均达到显著水平(P<0.05),且随着放牧强度的增加,草本区地表可蚀性颗粒含量逐渐减少,土壤质地逐渐粗化。3)放牧区的风沙流拟合函数均为幂函数,R2为0.78~0.97。草本中度(6.468 g·m^(-1)·d^(-1))和重度放牧区(9.294 g·m^(-1)·d^(-1))的水平通量分别是草本对照区(0.907 g·m^(-1)·d^(-1))的7.13和10.25倍。灌木区的输沙高度和放牧强度对输沙率的影响均小于草本区。以上研究结果表明:草本区风沙活动受放牧扰动的影响远大于灌木区,即使是中度放牧强度的水平输沙通量也远远大于禁牧区。因此,仅仅依据载畜量制定的放牧策略尚存在严重不足,为了防止草地退化,促进牧业的持续发展,在制定放牧策略时应将地表风沙活动强度作为重要指标进行综合考虑。 展开更多
关键词 放牧强度 荒漠草原 风沙活动 粒度特征 风沙流结构
下载PDF
Mapping the Risk of Water Erosion in the Watershed of the Ningxia-Inner Mongolia Reach of the Yellow River, China 被引量:3
2
作者 du he-qiang XUE Xian WANG Tao 《Journal of Mountain Science》 SCIE CSCD 2015年第1期70-84,共15页
Mapping and assessing soil-erosion risk can address the likelihood of occurrence of erosion as well as its consequences. This in turn provides precautionary and relevant suggestions to assist in disaster reduction. Be... Mapping and assessing soil-erosion risk can address the likelihood of occurrence of erosion as well as its consequences. This in turn provides precautionary and relevant suggestions to assist in disaster reduction. Because soil erosion by water in the watershed of the Ningxia-Inner Mongolia reach of the Yellow River is closely related to silting of the upper reaches of the Yellow River, it is necessary to assess erosion risk in this watershed. This study aims to identify the soil-erosion risk caused by water in the watershed of the Ningxia-Inner Mongolia reach of the Yellow River from 2ool to aOlO. Empirical models called Chinese Soil Loss Equation (CSLE) and Modified Universal Soil Loss Equation (MUSLE) were used to predict the erosion modulus in slope surfaces and gullies. Then the soil erosion risk in this watershed was assessed according to the classification criteria of soil erosion intensities (SL19o-2oo7). The study results showed that the range of values of the erosion modulus in this watershed was o-44,733 t/km2/a. More than 20% of the total watershed area was found to present an erosion risk, with the regions at risk mainly located in channels and their upper reaches, and in mountainous areas. To determine the regression coefficients of the erosion factors with respect to erosion modulus, a GWR (geographically weighted regression) was carried out using the ArcGIS software. It was found that the topographic factor has the highest contribution rate to the soil erosion modulus, while the highest contribution rate of the erosion factors to the erosion modulus and the largest values of the factors were not located in the same places. Based on this result, the authors propose that slope management is the most important task in preventing soil loss in this watershed, and the soil- conservation projects should be built according to the eontribution rate of the erosion factors. 展开更多
关键词 Chinese Soil Loss Equation (CSLE) Erosion risk Geographically weighted regression(GWR) Yellow River
下载PDF
Variation of alpine lakes from 1986 to 2019 in the Headwater Area of the Yellow River,Tibetan Plateau using Google Earth Engine 被引量:7
3
作者 LUO Dong-Liang JIN Hui-Jun +4 位作者 du he-qiang LI Chao MA Qiang duAN Shui-Qiang LI Guo-Shuai 《Advances in Climate Change Research》 SCIE CSCD 2020年第1期11-21,共11页
To understand the variations in surface water associated with changes in air temperature,precipitation,and permafrost in the Headwater Area of the Yellow River(HAYR),we studied the dynamics of alpine lakes larger than... To understand the variations in surface water associated with changes in air temperature,precipitation,and permafrost in the Headwater Area of the Yellow River(HAYR),we studied the dynamics of alpine lakes larger than 0.01 km^2 during 1986-2019 using Google Earth Engine(GEE)platform.The surface areas of water bodies in the HAYR were processed using mass remote sensing images consisting of Landsat TM/ETM-H/OLI,Sentinel-2A,and MODIS based on automatic extraction of water indices under GEE.Besides,the lake ice phenology of the Sister Lakes(the Gyaring Lake and the Ngoring Lake)was derived by threshold segmenting of water/ice area ratio.Results demonstrate that the change of surface areas experienced four stages:decreasing during 1986-2004,increasing during 2004-2012,decreasing again during 2012-2017,and increasing again during 2017-2019.Correspondingly,the number of small lakes decreased(-26.5 per year),increased(139.5 per year),again decreased(-109.0 per year),and again increased(433.0 per year).Eight lakes larger than 1 km^2 disappeared in 2004 but restored afterward.The overall trends in the area of small lakes(0.01-1 km^2),large lakes(>1 km^2),and all lakes during 1986-2019 were 0.4,3.1,and 3.4 km^2 per year,respectively.Although the onsets of freezing,freeze-up,breaking and the break-up of the Sister Lakes varied from year to year,there is no obvious trend regarding the lake ice phenology.Tendencies of lake variations in the HAYR are primarily related to the increased net precipitation and the declined aridity,followed by the construction of hydropower station around the outlet of the Ngoring Lake,as well as permafrost degradation. 展开更多
关键词 Headwater Area of the Yellow River Lake surface area Lake ice phenology Climate change Google Earth Engine Permafrost degradation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部