期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于BP神经网络与聚类分析的数学创新能力研究 被引量:2
1
作者 杜绍洪 李文烁 +1 位作者 郑江溢 谭远顺 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2019年第2期23-29,共7页
通过研究和分析给出提高研究生数学学习能力的针对性建议,以改善目前研究生数学学习能力跟不上科研水平的现状.该研究通过BP神经网络得出能够全面衡量数学学习能力的客观指标,得出数学学习能力的评价得分,并利用SPSS软件进行影响因素与... 通过研究和分析给出提高研究生数学学习能力的针对性建议,以改善目前研究生数学学习能力跟不上科研水平的现状.该研究通过BP神经网络得出能够全面衡量数学学习能力的客观指标,得出数学学习能力的评价得分,并利用SPSS软件进行影响因素与该指标的相关性检验,以得出显著影响研究生数学学习能力的因素.最后,根据调查对象的不同特征将研究生个体进行聚类,对每一类个体提升数学学习能力给出针对性建议. 展开更多
关键词 BP神经网络 相关性分析 聚类分析 研究生 数学学习能力
下载PDF
Residual-based a posteriori error estimates of nonconforming finite element method for elliptic problems with Dirac delta source terms 被引量:4
2
作者 du shaohong XIE XiaoPing 《Science China Mathematics》 SCIE 2008年第8期1440-1460,共21页
Two residual-based a posteriori error estimators of the nonconforming Crouzeix-Raviart element are derived for elliptic problems with Dirac delta source terms.One estimator is shown to be reliable and efficient,which ... Two residual-based a posteriori error estimators of the nonconforming Crouzeix-Raviart element are derived for elliptic problems with Dirac delta source terms.One estimator is shown to be reliable and efficient,which yields global upper and lower bounds for the error in piecewise W1,p seminorm.The other one is proved to give a global upper bound of the error in Lp-norm.By taking the two estimators as refinement indicators,adaptive algorithms are suggested,which are experimentally shown to attain optimal convergence orders. 展开更多
关键词 Crouzeix-Raviart element nonconforming FEM a posteriori error estimator longest edge bisection 65N15 65N30 65N50
原文传递
Convergence of an adaptive mixed finite element method for convection-diffusion-reaction equations 被引量:1
3
作者 du shaohong XIE XiaoPing 《Science China Mathematics》 SCIE CSCD 2015年第6期1327-1348,共22页
We prove the convergence of an adaptive mixed finite element method(AMFEM) for(nonsymmetric) convection-diffusion-reaction equations. The convergence result holds for the cases where convection or reaction is not pres... We prove the convergence of an adaptive mixed finite element method(AMFEM) for(nonsymmetric) convection-diffusion-reaction equations. The convergence result holds for the cases where convection or reaction is not present in convection- or reaction-dominated problems. A novel technique of analysis is developed by using the superconvergence of the scalar displacement variable instead of the quasi-orthogonality for the stress and displacement variables, and without marking the oscillation dependent on discrete solutions and data. We show that AMFEM is a contraction of the error of the stress and displacement variables plus some quantity. Numerical experiments confirm the theoretical results. 展开更多
关键词 convection instead posteriori marking meshes projection interpolation holds interior satisfy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部