The trend in the atmospheric heat source over the central and eastern Tibetan Plateau (CE-TP) is quantitatively estimated using historical observations at 71 meteorological stations, three reanalysis datasets from 198...The trend in the atmospheric heat source over the central and eastern Tibetan Plateau (CE-TP) is quantitatively estimated using historical observations at 71 meteorological stations, three reanalysis datasets from 1980-2008, and two satellite radiation datasets from 1984-2007. Results show that a weakening of sensible heat (SH) flux over the CE-TP continues. The most significant trend occurs in spring, induced mainly by decelerated surface wind speeds. The ground-air temperature difference shows a notable increasing trend over the last 5 years. Trends in net radiation flux of the atmospheric column over the CE-TP, evaluated by two satellite radiation datasets, are clearly different. Trends in the atmospheric heat source calculated by the three reanalysis datasets are not completely consistent, and even show opposite signals. Results from the two datasets both show a weakening of the heat source but the magnitude of one is significantly stronger, whereas an increase is indicated by the other data. Therefore, it is challenging to accurately calculate the trend in the atmospheric heat source over the CE-TP, particularly from the estimates of the reanalysis datasets.展开更多
Based on the 1958-1999 monthly averaged reanalysis data of the National Center for Environmental Prediction(NCEP)/National Center for Atmospheric Research(NCAR)and the rainfall data of 160 Chinese surface stations,the...Based on the 1958-1999 monthly averaged reanalysis data of the National Center for Environmental Prediction(NCEP)/National Center for Atmospheric Research(NCAR)and the rainfall data of 160 Chinese surface stations,the relationship between rainfall and the atmospheric circulation anomaly over East Asia(EA)in July and the sensible heating(SH)over the Tibetan Plateau(TP)from April to June(AMJ)is investigated by using the rotational experimental orthogonal function(REOF)method.The results show that the TP is an isolated heating source in this period.The lagged correlation analysis between the first rotational principal component(RPC)of SH over the TP in May and rainfall of EA in July demonstrates that strong SH over the TP before July leads to a positive rainfall anomaly over the TP,the valley between the Yangtze River and Huaihe River,and the regions south and southeast of the TP,and the Sichuan Basin and Yunnan-Guizhou Plateau,but less rainfall anomaly over the regions north,northeast,and west of the TP.Such rainfall anomaly patterns are shown to be well coordinated with those of the circulation and vapor flux fields,and are explained by using the thermal adaptation theory and quasi-stationary large-scale vorticity equation.Therefore,the status of SH over the TP during AMJ can be used as a predictor for the rainfall anomaly over EA,especially in the valley between the Yangtze River and Huaihe River.展开更多
This study investigates the impacts of tropical storms originated from the Bay of Bengal(BOBTSs) on the precipitation and soil moisture over the Tibetan Plateau(TP) in April–June(AMJ) and September–December(SOND) du...This study investigates the impacts of tropical storms originated from the Bay of Bengal(BOBTSs) on the precipitation and soil moisture over the Tibetan Plateau(TP) in April–June(AMJ) and September–December(SOND) during 1981–2011 based on the best track dataset provided by Joint Typhoon Warning Centre(JTWC). Results indicate that there are about 1.35 BOBTSs influence the TP in each year and most of them occurred in May and October, and the BOBTSs in AMJ influence the TP with larger extension and higher latitudes than those in SOND. The maximum regional precipitation induced by the BOBTSs accounts for more than 50% for the total precipitation in the corresponding month and about 20% for the season. Further analysis reveals that the surface soil moisture anomalies induced by the BOBTSs can persist only 20–25 days in AMJ, and the case is also true for the snow depth in SOND. Numerical simulations by using the regional climate model of Weather Research and Forecasting(WRF) suggest that the soil moisture anomalies in the sub-surface can last 2 months whereas for the surface it can persist only about 20 days, which agrees well with the observation analysis. Overall, the effect of the preceding BOBTSs on the snow depth and soil moisture anomalies over the TP cannot maintain to summer, and there is no robust connection between the BOBTSs and summer precipitation anomalies in East China. Moreover, since the mid-1990 s, the spring rainfall induced by the BOBTSs over the TP seems to be enhanced to a certain degree because of the intensified BOBTSs.展开更多
The planetary boundary layer (PBL) scheme in the regional climate model (RCM) has a significant impact on the interactions and exchanges of moisture, momentum, and energy between land, ocean, and atmosphere; howev...The planetary boundary layer (PBL) scheme in the regional climate model (RCM) has a significant impact on the interactions and exchanges of moisture, momentum, and energy between land, ocean, and atmosphere; however, its uncertainty will cause large systematic biases of RCM. Based on the four different PBL schemes (YSU, ACM2, Boulac, and MYJ) in Weather Research and Forecasting (WRF) model, the impacts of these schemes on the simulation of circulation and precipitation during the East Asian summer monsoon (EASM) are investigated. The simulated results of the two local turbulent kinetic energy (TKE) schemes, Boulac and MYJ, are more consistent with the observations than those in the two nonlocal closure schemes, YSU and ACM2. The former simulate more reasonable low-level southwesterly flow over East China and west pacific subtropical high (WPSH) than the latter. As to the modeling of summer monsoon precipitation, both the spatial distributions and temporal evolutions from Boulac and MTT are also better than those in YSU and ACM2 schemes. In addition, through the comparison between YSU and Boulac experiments, the differences from the results of EASM simulation are more obvious over the oceanic area. In the experiments with the nonlocal schemes YSU and ACM2, the boundary layer mixing processes are much stronger, which lead to produce more sea surface latent heat flux and enhanced convection, and finally induce the overestimated precipitation and corresponding deviation of monsoon circulation. With the further study, it is found that the absence of air-sea interaction in WRF may amplify the biases caused by PBL scheme over the ocean. Consequently, there is a reduced latent heat flux over the sea surface and even more reasonable EASM simulation, if an ocean model coupled into WRF.展开更多
The sensitivity of simulated tropical intraseasonal oscillations (ISO) to different cumulus parameterization schemes was analyzed using an atmospheric general circulation model (latest version-SAMIL2.2.3) developed at...The sensitivity of simulated tropical intraseasonal oscillations (ISO) to different cumulus parameterization schemes was analyzed using an atmospheric general circulation model (latest version-SAMIL2.2.3) developed at the Laboratory for Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) at the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences.Results show that the basic features of tropical climatological intraseasonal oscillations (CISO) can be captured using all three cumulus schemes.The CISO simulated by the Tiedtke scheme was found to be more realistic than that of the Manabe and Zhang-McFarlane schemes.The results of simulated transient intraseasonal oscillations (TISO) indicate that although the Tiedtke and the Zhang-McFarlane schemes in the new version SAMIL2.2.3 have been adjusted according to different problems,only the latter can simulate the eastward propagation of the 27-50-day TISO mode.It may be associated with the more realistic diabatic heating profile simulated by the Zhang-McFarlane scheme.In addition,the Manabe scheme in SAMIL2.2.3 is the same as that in the prior version SAMIL2.08.However,some aspects of the physical process,such as the radiation scheme and aerosol condition,have been changed.Conversely the eastward propagation from 100°E to the west of the tropical 27-50-day TISO mode only can be simulated using the Manabe scheme of SAMIL 2.08.Consequently,not all the improvements of physical parameterization schemes work well in every respect.The coordinated developments between dynamic frame and physical processes,and among different physical processes,are important methods that may be used to improve the model.展开更多
基金supported by the Chinese Ministry of Science and Technology (2010CB951703 and 2009CB421403)the Knowledge Innovation Program of Chinese Academy of Sciences (KZCX2-YW-Q11- 01)the National Natural Science Foundation of China (40975047)
文摘The trend in the atmospheric heat source over the central and eastern Tibetan Plateau (CE-TP) is quantitatively estimated using historical observations at 71 meteorological stations, three reanalysis datasets from 1980-2008, and two satellite radiation datasets from 1984-2007. Results show that a weakening of sensible heat (SH) flux over the CE-TP continues. The most significant trend occurs in spring, induced mainly by decelerated surface wind speeds. The ground-air temperature difference shows a notable increasing trend over the last 5 years. Trends in net radiation flux of the atmospheric column over the CE-TP, evaluated by two satellite radiation datasets, are clearly different. Trends in the atmospheric heat source calculated by the three reanalysis datasets are not completely consistent, and even show opposite signals. Results from the two datasets both show a weakening of the heat source but the magnitude of one is significantly stronger, whereas an increase is indicated by the other data. Therefore, it is challenging to accurately calculate the trend in the atmospheric heat source over the CE-TP, particularly from the estimates of the reanalysis datasets.
基金supported by the National Natural Science Foundation of China(Grant Nos.40405016,4047502740135020,40221503 and 40023001)the Chinese Academy of Scienccs(Grant No.ZKCX2-SW-210).
文摘Based on the 1958-1999 monthly averaged reanalysis data of the National Center for Environmental Prediction(NCEP)/National Center for Atmospheric Research(NCAR)and the rainfall data of 160 Chinese surface stations,the relationship between rainfall and the atmospheric circulation anomaly over East Asia(EA)in July and the sensible heating(SH)over the Tibetan Plateau(TP)from April to June(AMJ)is investigated by using the rotational experimental orthogonal function(REOF)method.The results show that the TP is an isolated heating source in this period.The lagged correlation analysis between the first rotational principal component(RPC)of SH over the TP in May and rainfall of EA in July demonstrates that strong SH over the TP before July leads to a positive rainfall anomaly over the TP,the valley between the Yangtze River and Huaihe River,and the regions south and southeast of the TP,and the Sichuan Basin and Yunnan-Guizhou Plateau,but less rainfall anomaly over the regions north,northeast,and west of the TP.Such rainfall anomaly patterns are shown to be well coordinated with those of the circulation and vapor flux fields,and are explained by using the thermal adaptation theory and quasi-stationary large-scale vorticity equation.Therefore,the status of SH over the TP during AMJ can be used as a predictor for the rainfall anomaly over EA,especially in the valley between the Yangtze River and Huaihe River.
基金supported by the Key Laboratory of Meteorological Disaster of Ministry of Education,Nanjing University of Information Science and Technology(Grand No.KLME1309)Special Fund for Public Welfare Industry(meteorology)administered by the Chinese Ministry of Finance and Ministry of Science and Technology(Grant No.GYHY201406001)the National Natural Science Foundation of China(Grant Nos.91337216,41175070)
文摘This study investigates the impacts of tropical storms originated from the Bay of Bengal(BOBTSs) on the precipitation and soil moisture over the Tibetan Plateau(TP) in April–June(AMJ) and September–December(SOND) during 1981–2011 based on the best track dataset provided by Joint Typhoon Warning Centre(JTWC). Results indicate that there are about 1.35 BOBTSs influence the TP in each year and most of them occurred in May and October, and the BOBTSs in AMJ influence the TP with larger extension and higher latitudes than those in SOND. The maximum regional precipitation induced by the BOBTSs accounts for more than 50% for the total precipitation in the corresponding month and about 20% for the season. Further analysis reveals that the surface soil moisture anomalies induced by the BOBTSs can persist only 20–25 days in AMJ, and the case is also true for the snow depth in SOND. Numerical simulations by using the regional climate model of Weather Research and Forecasting(WRF) suggest that the soil moisture anomalies in the sub-surface can last 2 months whereas for the surface it can persist only about 20 days, which agrees well with the observation analysis. Overall, the effect of the preceding BOBTSs on the snow depth and soil moisture anomalies over the TP cannot maintain to summer, and there is no robust connection between the BOBTSs and summer precipitation anomalies in East China. Moreover, since the mid-1990 s, the spring rainfall induced by the BOBTSs over the TP seems to be enhanced to a certain degree because of the intensified BOBTSs.
基金jointly sponsored by the "Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issue" of the Chinese Academy of Sciences (Grant No. XDA-05110303)the Opening Fund of Key Laboratory for Land Surface Process and Climate Change in Cold and Arid Regions, CAS, the National Basic Research Program of China (Grant No.2010CB951703)the Social Common Weal Profession Research Program of Chinese Ministry of Finance/Ministry of Science and Technology (Grant No. GYHY201006014)
文摘The planetary boundary layer (PBL) scheme in the regional climate model (RCM) has a significant impact on the interactions and exchanges of moisture, momentum, and energy between land, ocean, and atmosphere; however, its uncertainty will cause large systematic biases of RCM. Based on the four different PBL schemes (YSU, ACM2, Boulac, and MYJ) in Weather Research and Forecasting (WRF) model, the impacts of these schemes on the simulation of circulation and precipitation during the East Asian summer monsoon (EASM) are investigated. The simulated results of the two local turbulent kinetic energy (TKE) schemes, Boulac and MYJ, are more consistent with the observations than those in the two nonlocal closure schemes, YSU and ACM2. The former simulate more reasonable low-level southwesterly flow over East China and west pacific subtropical high (WPSH) than the latter. As to the modeling of summer monsoon precipitation, both the spatial distributions and temporal evolutions from Boulac and MTT are also better than those in YSU and ACM2 schemes. In addition, through the comparison between YSU and Boulac experiments, the differences from the results of EASM simulation are more obvious over the oceanic area. In the experiments with the nonlocal schemes YSU and ACM2, the boundary layer mixing processes are much stronger, which lead to produce more sea surface latent heat flux and enhanced convection, and finally induce the overestimated precipitation and corresponding deviation of monsoon circulation. With the further study, it is found that the absence of air-sea interaction in WRF may amplify the biases caused by PBL scheme over the ocean. Consequently, there is a reduced latent heat flux over the sea surface and even more reasonable EASM simulation, if an ocean model coupled into WRF.
基金supported by National Basic Research Program of China (Grant Nos. 2010CB951703 and 2009CB421403)Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KZCX2-YW-Q11-01 and KZCX2-YW-BR-14) "Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issue" of the Chinese Academy of Sciences (Grant No. XDA05110303)
文摘The sensitivity of simulated tropical intraseasonal oscillations (ISO) to different cumulus parameterization schemes was analyzed using an atmospheric general circulation model (latest version-SAMIL2.2.3) developed at the Laboratory for Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) at the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences.Results show that the basic features of tropical climatological intraseasonal oscillations (CISO) can be captured using all three cumulus schemes.The CISO simulated by the Tiedtke scheme was found to be more realistic than that of the Manabe and Zhang-McFarlane schemes.The results of simulated transient intraseasonal oscillations (TISO) indicate that although the Tiedtke and the Zhang-McFarlane schemes in the new version SAMIL2.2.3 have been adjusted according to different problems,only the latter can simulate the eastward propagation of the 27-50-day TISO mode.It may be associated with the more realistic diabatic heating profile simulated by the Zhang-McFarlane scheme.In addition,the Manabe scheme in SAMIL2.2.3 is the same as that in the prior version SAMIL2.08.However,some aspects of the physical process,such as the radiation scheme and aerosol condition,have been changed.Conversely the eastward propagation from 100°E to the west of the tropical 27-50-day TISO mode only can be simulated using the Manabe scheme of SAMIL 2.08.Consequently,not all the improvements of physical parameterization schemes work well in every respect.The coordinated developments between dynamic frame and physical processes,and among different physical processes,are important methods that may be used to improve the model.