期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Microstructure and mechanical properties of 6061 aluminum alloy laser-MIG hybrid welding joint 被引量:3
1
作者 FAN Cong YANG Shang-lei +2 位作者 duan chen-feng ZHU Min-qi BAI Yi-shan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第3期898-911,共14页
In this paper, 3 mm 6061 aluminum alloy sheets were welded by laser MIG hybrid welding. Based on the experiment, the best welding parameters were determined to ensure the penetration welding. The detailed microstructu... In this paper, 3 mm 6061 aluminum alloy sheets were welded by laser MIG hybrid welding. Based on the experiment, the best welding parameters were determined to ensure the penetration welding. The detailed microstructure,tensile and fatigue fracture morphology and surface fatigue damage of the welded joints were analyzed by optical microscope(OM), scanning electron microscope(SEM) and energy dispersive spectrometer(EDS). The results show that there are two main kinds of precipitates, one is the long Si rich precipitates at the grain boundaries, the other is the intragranular Cu rich precipitates. The tensile test results show that the tensile strength of the joint is 224 MPa, which is only 70.2% of the base metal. Through the analysis of tensile fracture, there are great differences in the formation of tensile dimple. In the tensile-tensile fatigue test with a stress rate of 0.1, the conditional fatigue limits of base metal and welded joint are 101.9 MPa and 54.4 MPa, respectively. By comparing the fatigue fracture of the welded joints under different stress amplitudes, it was found that the main factor leading to the fracture of the joint is porosity. Through further analysis of the pore defects, it was found that there are transgranular and intergranular propagation ways of microcracks in the pores, and the mixed propagation way was also found. 展开更多
关键词 aluminum alloy laser-MIG hybrid welding fatigue property MICROSTRUCTURE mechanical properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部