期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A fusion of least squares and empirical likelihood for regression models with a missing binary covariate 被引量:1
1
作者 duan xiaogang wang zhi 《Science China Mathematics》 SCIE CSCD 2016年第10期2027-2036,共10页
Multiply robust inference has attracted much attention recently in the context of missing response data. An estimation procedure is multiply robust, if it can incorporate information from multiple candidate models, an... Multiply robust inference has attracted much attention recently in the context of missing response data. An estimation procedure is multiply robust, if it can incorporate information from multiple candidate models, and meanwhile the resulting estimator is consistent as long as one of the candidate models is correctly specified. This property is appealing, since it provides the user a flexible modeling strategy with better protection against model misspecification. We explore this attractive property for the regression models with a binary covariate that is missing at random. We start from a reformulation of the celebrated augmented inverse probability weighted estimating equation, and based on this reformulation, we propose a novel combination of the least squares and empirical likelihood to separately handle each of the two types of multiple candidate models,one for the missing variable regression and the other for the missingness mechanism. Due to the separation, all the working models are fused concisely and effectively. The asymptotic normality of our estimator is established through the theory of estimating function with plugged-in nuisance parameter estimates. The finite-sample performance of our procedure is illustrated both through the simulation studies and the analysis of a dementia data collected by the national Alzheimer's coordinating center. 展开更多
关键词 calibration covariate adjustment effect modification missing at random multiple robustness refitting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部