期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A GEOMETRIC APPROACH TO dim S_2~1(Δ_(MS))
1
作者 duhong SHIXiquan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2002年第2期202-204,共3页
关键词 代数几何 仿样函数 仿样逼近 几何方法
原文传递
ENDOMORPHISMS OF LIE ALGEBRA F[t]a/dt
2
作者 duhong 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2004年第1期143-146,共4页
Let F be a field of characteristic zero. W_n = F[t_1^(+-1), t_2^(+-1), ...,t_n^(+-1)] (partial deriv)/((partial deriv)t_1) + ... + F[t_1^(+-1), t_2^(+-1), ..., t_n^(+-1)](partial deriv)/((partial deriv)t_n) is the Wit... Let F be a field of characteristic zero. W_n = F[t_1^(+-1), t_2^(+-1), ...,t_n^(+-1)] (partial deriv)/((partial deriv)t_1) + ... + F[t_1^(+-1), t_2^(+-1), ..., t_n^(+-1)](partial deriv)/((partial deriv)t_n) is the Witt algebra over F, W_n^+ = F[t_1, t_2 ..., t_n](partial deriv)/((partial deriv)t_1) + ... + F[t_1, t_2 ..., t_n] (partial deriv)/((partialderiv)t_n) is Lie subalgebra of W_n. It is well known both W_n and W_n^+ are simple infinitedimensional Lie algebra. In Zhao's paper, it was conjectured that End(W_n^+) - {0} = Aut(W_n^+) andit was proved that the validity of this conjecture implies the validity of the well-known Jacobianconjecture. In this short note, we check the conjecture above for n = 1. We show End(W_1^+) - {0} =Aut(W_1^+). 展开更多
关键词 ENDOMORPHISM AUTOMORPHISM witt algebra
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部