Let A be a symmetric and positive definite(1,1)tensor on a bounded domain Ω in an ndimensional metric measure space(R^n,<,>,e^-φdv).In this paper,we investigate the Dirichlet eigenvalue problem of a system of ...Let A be a symmetric and positive definite(1,1)tensor on a bounded domain Ω in an ndimensional metric measure space(R^n,<,>,e^-φdv).In this paper,we investigate the Dirichlet eigenvalue problem of a system of equations of elliptic operators in weighted divergence form{LA,φu+α▽(divu)-▽φdivu]=-su,inΩ,u∣aΩ=0,where LA,φ=div(A▽(·))-(A▽φ,▽(·)),α is a nonnegative constant and u is a vector-valued function.Some universal inequalities for eigenvalues of this problem are established.Moreover,as applications of these results,we give some estimates for the upper bound of sk+1 and the gap of sk+1-sk in terms of the first k eigenvalues.Our results contain some results for the Lam′e system and a system of equations of the drifting Laplacian.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.1100113011571361 and 11831005)the Fundamental Research Funds for the Central Universities(Grant No.30917011335)。
文摘Let A be a symmetric and positive definite(1,1)tensor on a bounded domain Ω in an ndimensional metric measure space(R^n,<,>,e^-φdv).In this paper,we investigate the Dirichlet eigenvalue problem of a system of equations of elliptic operators in weighted divergence form{LA,φu+α▽(divu)-▽φdivu]=-su,inΩ,u∣aΩ=0,where LA,φ=div(A▽(·))-(A▽φ,▽(·)),α is a nonnegative constant and u is a vector-valued function.Some universal inequalities for eigenvalues of this problem are established.Moreover,as applications of these results,we give some estimates for the upper bound of sk+1 and the gap of sk+1-sk in terms of the first k eigenvalues.Our results contain some results for the Lam′e system and a system of equations of the drifting Laplacian.