AIM: To detect the MLH1 gene promoter germline- methylation in probands of Chinese hereditary non- polyposis colorectal cancer (HNPCC), and to evaluate the role of methylation in MLH1 gene promoter and molecular ge...AIM: To detect the MLH1 gene promoter germline- methylation in probands of Chinese hereditary non- polyposis colorectal cancer (HNPCC), and to evaluate the role of methylation in MLH1 gene promoter and molecular genetics in screening for HNPCC.METHODS: The promoter germline methylation of MLH1 gene was detected by methylation-specific PCR (MSP) in 18 probands from unrelated HNPCC families with high microsatellite-instability (MSI-H) phenotype but without germline mutations in MSH2, MLH1 and MSH6 genes. At the same time, 6 kindreds were col- lected with microsatellite-stability (MSS) phenotype but without germline mutations in MSH2, MIH1 and MSH6 genes as controls. The results of MSP were confirmed by clone sequencing. To ensure the reliability of the results, family H65 with nonsense germline mutation at c.2228C 〉 A in MSH2 gene was used as the negative control and the cell line sw48 was used as the known positive control along with water as the blank control. Immunochemical staining of MIH1 protein was performed with Envision two-step method in those patients with aberrant methylation to judge whether the status of MLH1 gene methylation affects the expression of MLH1 protein.RESULTS: Five probands with MIH1 gene promoter methylation were detected in 18 Chinese HNPCC families with MSI-H phenotype but without germline mutations in MSH2, MLH1 and MSH6 genes. Two of the five probands from families H10 and H29 displayed exhaustive-methylation, fulfilling the Japanese criteria (JC) and the Amsterdam criteria (AC), respectively. The other 3 probands presented part-methylation fulfilling the AC. Of the 13 probands with unmethylation phenotype, 8 fulfilled the JC and the Bethesda guidelines (BG), 5 fulfilled the AC. The rate of aberrant methylation in MLH1 gene in the AC group (22.2%, 4/18) was higher than that in the JC/BG groups (5.6%, 1/18) in all HNPCC families with MSI-H phenotype but without germline mutations in PISH2, PIIH1 and MSH6 genes. However, no proband with methylation in MLH1 gene was found in the families with MSS phenotype and without germline mutations in MSH2, MLH1 and MSH6 genes. No expression of MLH1 protein was found in tumor tissues from two patients with exhaustive-methylation phenotype, whereas positive expression of MLH1 protein was observed in tumor tissues from patients with partial methylation phenotype (excluding family H42 without tumor tissue), indicating that exhaustive-methylation of MLH1 gene can cause defective expression of MLH1 protein.CONCLUSION: Methylation phenotype of MLH1 gene is correlated with microsatellite phenotype of MMR genes, especially with MSI-H. Exhaustive-methylation of MLH1 gene can silence the expression of MLH1 protein. MLH1 promoter methylation analysis is a promising tool for molecular genetics screening for HNPCC.展开更多
AIM: To investigate the germline mutations of MSH6 gene in probands of Chinese hereditary non-polyposis colorectal cancer (HNPCC) families fulfilling different clinical criteria. METHODS: Germline mutations of MSH6 ge...AIM: To investigate the germline mutations of MSH6 gene in probands of Chinese hereditary non-polyposis colorectal cancer (HNPCC) families fulfilling different clinical criteria. METHODS: Germline mutations of MSH6 gene were detected by PCR-based DNA sequencing in 39 unrelated HNPCC probands fulfilling different clinical criteria in which MSH2 and MLH1 mutations were excluded. To further investigate the pathological effects of detected missense mutations, we analyzed the above related MSH6 exons using PCR-based sequencing in 137 healthy persons with no family history. The clinicopathological features were collected from the Archive Library of Cancer Hospital, Fudan University and analyzed. RESULTS: Four germline missense mutations distributed in the 4th, 6th and 9th exons were observed. Of them, three were not found in international HNPCC databases and did not occur in 137 healthy controls, indicating that they were novel missense mutations. The remaining mutation which is consistent with the case H14 at c.3488A>T of exon 6 of MSH6 gene was also found in the controls, the rate was approximately 3.65% (5/137) and the type of mutation was not found in the international HNPCC mutational and SNP databases, suggesting that this missense mutation was a new SNP unreported up to date. CONCLUSION: Three novel missense mutations and a new SNP observed in the probands of Chinese HNPCC families, may play an important role in the development of HNPCC.展开更多
AIM: To detect germline mutations of MLH1, and investigate microsatellite instability and expression of MLH1 in tumor tissues of hereditary non-polyposis colorectal cancer (HNPCC) with two novel germline mutations,...AIM: To detect germline mutations of MLH1, and investigate microsatellite instability and expression of MLH1 in tumor tissues of hereditary non-polyposis colorectal cancer (HNPCC) with two novel germline mutations, and further investigate the pathobiology of the two novel mutations of MLH1. METHODS: RNA was extracted from the peripheral blood of 12 patients from 12 different families that fulfilled the Amsterdam 11 Criteria for HNPCC. Germline mutations of MLH1 were determined by RT-PCR, followed by cDNA sequencing analysis. PCR-GeneScan analysis was used to investigate microsatellite instability with a panel of five microsatellite markers (BAT26, BAT25, D5S346, D2S123 and mfd15), along with immunohistochemical staining to detect the expression of MLH1 protein in two patients' tumor tissues with novel mutations. RESULTS: Three germline mutations were found in four patients, one of the mutations has previously been reported, but the other two, CGC→TGC at codon 217 of exon 8 and CCG→CTG at codon 581 of exon 16, have not been reported. The two patients' tumor tissues with novel mutations had high-frequency microsatellite instability that showed more than two unstable loci, and both tumors lost their MLH1 protein expression. CONCLUSION: The two novel germline mutations of MLH1 in HNPCC families i.e. CGC→TGC at codon 217 of exon 8 and CCG→CTG at codon 581 of exon 16, are very likely to have pathological significance.展开更多
基金Supported by Shanghai Medical Development Fund for Major Projects, No. 05III004Shanghai Pujiang Projects for Talents, No. 06PJ14019
文摘AIM: To detect the MLH1 gene promoter germline- methylation in probands of Chinese hereditary non- polyposis colorectal cancer (HNPCC), and to evaluate the role of methylation in MLH1 gene promoter and molecular genetics in screening for HNPCC.METHODS: The promoter germline methylation of MLH1 gene was detected by methylation-specific PCR (MSP) in 18 probands from unrelated HNPCC families with high microsatellite-instability (MSI-H) phenotype but without germline mutations in MSH2, MLH1 and MSH6 genes. At the same time, 6 kindreds were col- lected with microsatellite-stability (MSS) phenotype but without germline mutations in MSH2, MIH1 and MSH6 genes as controls. The results of MSP were confirmed by clone sequencing. To ensure the reliability of the results, family H65 with nonsense germline mutation at c.2228C 〉 A in MSH2 gene was used as the negative control and the cell line sw48 was used as the known positive control along with water as the blank control. Immunochemical staining of MIH1 protein was performed with Envision two-step method in those patients with aberrant methylation to judge whether the status of MLH1 gene methylation affects the expression of MLH1 protein.RESULTS: Five probands with MIH1 gene promoter methylation were detected in 18 Chinese HNPCC families with MSI-H phenotype but without germline mutations in MSH2, MLH1 and MSH6 genes. Two of the five probands from families H10 and H29 displayed exhaustive-methylation, fulfilling the Japanese criteria (JC) and the Amsterdam criteria (AC), respectively. The other 3 probands presented part-methylation fulfilling the AC. Of the 13 probands with unmethylation phenotype, 8 fulfilled the JC and the Bethesda guidelines (BG), 5 fulfilled the AC. The rate of aberrant methylation in MLH1 gene in the AC group (22.2%, 4/18) was higher than that in the JC/BG groups (5.6%, 1/18) in all HNPCC families with MSI-H phenotype but without germline mutations in PISH2, PIIH1 and MSH6 genes. However, no proband with methylation in MLH1 gene was found in the families with MSS phenotype and without germline mutations in MSH2, MLH1 and MSH6 genes. No expression of MLH1 protein was found in tumor tissues from two patients with exhaustive-methylation phenotype, whereas positive expression of MLH1 protein was observed in tumor tissues from patients with partial methylation phenotype (excluding family H42 without tumor tissue), indicating that exhaustive-methylation of MLH1 gene can cause defective expression of MLH1 protein.CONCLUSION: Methylation phenotype of MLH1 gene is correlated with microsatellite phenotype of MMR genes, especially with MSI-H. Exhaustive-methylation of MLH1 gene can silence the expression of MLH1 protein. MLH1 promoter methylation analysis is a promising tool for molecular genetics screening for HNPCC.
基金Supported by Shanghai Medical Development Fund for Major Projects, No. 05Ⅲ004 and Shanghai Pu Jiang Projects for Talented-Men, 06PJ14019
文摘AIM: To investigate the germline mutations of MSH6 gene in probands of Chinese hereditary non-polyposis colorectal cancer (HNPCC) families fulfilling different clinical criteria. METHODS: Germline mutations of MSH6 gene were detected by PCR-based DNA sequencing in 39 unrelated HNPCC probands fulfilling different clinical criteria in which MSH2 and MLH1 mutations were excluded. To further investigate the pathological effects of detected missense mutations, we analyzed the above related MSH6 exons using PCR-based sequencing in 137 healthy persons with no family history. The clinicopathological features were collected from the Archive Library of Cancer Hospital, Fudan University and analyzed. RESULTS: Four germline missense mutations distributed in the 4th, 6th and 9th exons were observed. Of them, three were not found in international HNPCC databases and did not occur in 137 healthy controls, indicating that they were novel missense mutations. The remaining mutation which is consistent with the case H14 at c.3488A>T of exon 6 of MSH6 gene was also found in the controls, the rate was approximately 3.65% (5/137) and the type of mutation was not found in the international HNPCC mutational and SNP databases, suggesting that this missense mutation was a new SNP unreported up to date. CONCLUSION: Three novel missense mutations and a new SNP observed in the probands of Chinese HNPCC families, may play an important role in the development of HNPCC.
基金the Key Project of Shanghai Medical Subjects,No.05Ⅲ004 and Shanghai Pujiang Program,No.06PJ14019
文摘AIM: To detect germline mutations of MLH1, and investigate microsatellite instability and expression of MLH1 in tumor tissues of hereditary non-polyposis colorectal cancer (HNPCC) with two novel germline mutations, and further investigate the pathobiology of the two novel mutations of MLH1. METHODS: RNA was extracted from the peripheral blood of 12 patients from 12 different families that fulfilled the Amsterdam 11 Criteria for HNPCC. Germline mutations of MLH1 were determined by RT-PCR, followed by cDNA sequencing analysis. PCR-GeneScan analysis was used to investigate microsatellite instability with a panel of five microsatellite markers (BAT26, BAT25, D5S346, D2S123 and mfd15), along with immunohistochemical staining to detect the expression of MLH1 protein in two patients' tumor tissues with novel mutations. RESULTS: Three germline mutations were found in four patients, one of the mutations has previously been reported, but the other two, CGC→TGC at codon 217 of exon 8 and CCG→CTG at codon 581 of exon 16, have not been reported. The two patients' tumor tissues with novel mutations had high-frequency microsatellite instability that showed more than two unstable loci, and both tumors lost their MLH1 protein expression. CONCLUSION: The two novel germline mutations of MLH1 in HNPCC families i.e. CGC→TGC at codon 217 of exon 8 and CCG→CTG at codon 581 of exon 16, are very likely to have pathological significance.