Owing to its low cost,short process and low energy consumption,semi-solid processing(SSP)of aluminum(Al)and magnesium(Mg)alloys has been considered as a competitive approach to fabricate complicated components with ex...Owing to its low cost,short process and low energy consumption,semi-solid processing(SSP)of aluminum(Al)and magnesium(Mg)alloys has been considered as a competitive approach to fabricate complicated components with excellent performance.Over the past decade,significant progress has been achieved in deeply understanding the SSP process,the microstructure and performance of the fabricated components in China.This paper starts with a retrospective overview of some common slurry preparation methods,followed by presenting the performance and the underlying mechanisms of SSP fabricated alloys.Then,the mainstream opinions on the microstructure evolution and rheological flow behavior of semi-solid slurry are discussed.Subsequently,the general situation and some recent examples of industrial applications of SSP are presented.Finally,special attention is paid to the unresolved issues and the future directions in SSP of Al and Mg alloys in China.展开更多
The microstructure and mechanical properties of rheo-diecasting Al-6Zn-2Mg-2Cu alloys microalloyed with Ti,Sc and Sc+Zr were studied by optical microscopy(OM),scanning electron microscopy(SEM),X-ray diffraction(XRD),h...The microstructure and mechanical properties of rheo-diecasting Al-6Zn-2Mg-2Cu alloys microalloyed with Ti,Sc and Sc+Zr were studied by optical microscopy(OM),scanning electron microscopy(SEM),X-ray diffraction(XRD),hardness testing,and tensile testing.The swirled equilibrium enthalpy device(SEED)process was introduced to prepare the semisolid slurry.Results show that the addition of Ti,Sc,and Sc+Zr refines the grain size and improves the uniformity of the semisolid slurry and then suppresses the growth of theα-Al grain during solution heat treatment.The microstructure of the four alloys in as-cast state mainly consists of sphericalα-Al and the Mg(Al,Cu,Zn)_(2)(η)eutectic phase.Moreover,primary Al_(3)Sc,Al_(3)(Sc,Zr)and Al_(3)Zr are also found in the micro-alloying alloys.After solution and aging heat treatment,most of the Mg(Al,Cu,Zn)_(2) phases dissolve into theα-Al matrix,while part of Mg(Al,Cu,Zn)_(2) phases transform to Al_(2)CuMg(S)phases.However,the coarse primary Al_(3)Sc and Al_(3)(Sc,Zr)still remain in the matrix,and promote crack initiation and propagation.With the tensile strength of 553 MPa,yield strength of 463 MPa and elongation of 13.4%at T6 state,trace Ti addition generates more attractive mechanical properties than the other three alloys.展开更多
A systematic study on how Cu content affects the microstructure and mechanical properties of rheo-diecasting Al-6Zn-2Mg-xCu alloys during solution treatment and ageing heat treatment was conducted.The swirled enthalpy...A systematic study on how Cu content affects the microstructure and mechanical properties of rheo-diecasting Al-6Zn-2Mg-xCu alloys during solution treatment and ageing heat treatment was conducted.The swirled enthalpy equilibrium device(SEED)was adopted to prepare the semi-solid slurry of Al-6Zn-2Mg-xCu alloys.The microstructure development and mechanical properties were studied using optical microscopy(OM),scanning electron microscopy(SEM),X-ray diffraction(XRD),differential scanning calorimetry(DSC),as well as hardness and tensile testing.The grain boundary and shape factor were calculated using image processing software(Image-Pro Plus 6.0).Results show that the alloys are composed of typical globular primaryα-Al grains,eutectic phases,and smaller secondaryα-Al grains.After solution and ageing heat treatment,the eutectic phases are dissolved into Al matrix when the Cu content is lower than 1.5wt.%,while some eutectic phases transform into Al_(2)CuMg(S)phases and remain at grain boundaries when Cu content reaches 2wt.%.T6 heat treatment significantly enhances the mechanical properties of rheo-diecasting Al-6Zn-2Mg-xCu alloys.When Cu concentration is 0.5wt.%-1.5wt.%,the ultimate tensile strength,yield strength and elongation of T6 treated alloys rise to around 500 MPa,420 MPa,and 18%,respectively.展开更多
In this paper,two ways of micro structural characterization,optical microscopy(OM) and polarized light microscopy(PLM),were both employed to describe the micro structure of semisolid slurry prepared by swirling enthal...In this paper,two ways of micro structural characterization,optical microscopy(OM) and polarized light microscopy(PLM),were both employed to describe the micro structure of semisolid slurry prepared by swirling enthalpy equilibration device(SEED).The results show that PLM is more reliable and accurate than OM to describe the special morphology feature of semisolid slurry made by SEED process.Meanwhile,the effects of pouring temperature and mass of molten liquid on the primary α-Al particle size and morphology were also investigated using PLM.The quantitative metallographic results measured from PLM demonstrate that the grain size and morphology and their distribution are significantly affected by both pouring temperature and the mass of molten liquid.The grain size poured with 2.7 kg liquid decreases from 659 to186 μm,and grain morphology transforms from dendrite to globular structure with pouring temperature reducing from690 to 630℃.The decreasing pouring temperature also promotes the distribution of spherical structure on the cross section.Meanwhile,the mass of molten liquid decreasing from 2.7 to 2.3 kg can decrease the grain size by maximum of 44% at high pouring temperature.展开更多
In the present study,numerical simulation method was used to analyze the conditions,resulting in the formation of blisters during solution heat treatment.Blister formation is considered to occur as the height of blist...In the present study,numerical simulation method was used to analyze the conditions,resulting in the formation of blisters during solution heat treatment.Blister formation is considered to occur as the height of blister reaches 5μm.The effects of process parameters on the magnitude of the forming temperatures of blister(Tb)were discussed.Two kinds of Al-Si alloys were used to analyze the effect of mechanical properties of the alloys on blister forming conditions.Simulation results show that decreasing the initial pressure in gas hole,the long-short axial ratio of gas hole and the size of gas hole,as well as increasing the depth of gas hole and the strength of alloy are helpful to increase the critical temperature of forming blister.These conclusions are helpful for casters to understand the conditions controlling blister formation during solution heat treatment and take actions to avoid the blister defects.展开更多
In this study, the influence of hot isostatic pressing(HIP) process on the 418 alloy produced by metal injection molding(MIM) technique(named as MIM 418)was investigated based on the characteristic analysis of 4...In this study, the influence of hot isostatic pressing(HIP) process on the 418 alloy produced by metal injection molding(MIM) technique(named as MIM 418)was investigated based on the characteristic analysis of 418 alloy powder. And comparison analysis of the microstructure and mechanical property between the MIM 418 and as-cast 418 alloys was performed by scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS),and X-ray diffraction(XRD). The results show that MIM418 alloy exhibits fine grain(~30 μm) and uniform microstructure. The defects existing in MIM 418 alloy formed during sintering process can be eliminated through HIP treatment, and the relative density increases from97.0 % to 99.5 %. The mechanical property can be improved significantly because of the elimination of defects, and the tensile strength and elongation are1,271 MPa and 16.8 %, respectively, which are increased by 34.5 % and 180 % compared with K418 alloy after solution heat treatment.展开更多
基金financial supports from the Shenzhen Science and Technology Innovation Commission, China (Nos. KQTD20170328154443162, JCYJ20180305123432756)。
文摘Owing to its low cost,short process and low energy consumption,semi-solid processing(SSP)of aluminum(Al)and magnesium(Mg)alloys has been considered as a competitive approach to fabricate complicated components with excellent performance.Over the past decade,significant progress has been achieved in deeply understanding the SSP process,the microstructure and performance of the fabricated components in China.This paper starts with a retrospective overview of some common slurry preparation methods,followed by presenting the performance and the underlying mechanisms of SSP fabricated alloys.Then,the mainstream opinions on the microstructure evolution and rheological flow behavior of semi-solid slurry are discussed.Subsequently,the general situation and some recent examples of industrial applications of SSP are presented.Finally,special attention is paid to the unresolved issues and the future directions in SSP of Al and Mg alloys in China.
基金financial support from the National Key R&D Program of China(No.2016YFB0301003).
文摘The microstructure and mechanical properties of rheo-diecasting Al-6Zn-2Mg-2Cu alloys microalloyed with Ti,Sc and Sc+Zr were studied by optical microscopy(OM),scanning electron microscopy(SEM),X-ray diffraction(XRD),hardness testing,and tensile testing.The swirled equilibrium enthalpy device(SEED)process was introduced to prepare the semisolid slurry.Results show that the addition of Ti,Sc,and Sc+Zr refines the grain size and improves the uniformity of the semisolid slurry and then suppresses the growth of theα-Al grain during solution heat treatment.The microstructure of the four alloys in as-cast state mainly consists of sphericalα-Al and the Mg(Al,Cu,Zn)_(2)(η)eutectic phase.Moreover,primary Al_(3)Sc,Al_(3)(Sc,Zr)and Al_(3)Zr are also found in the micro-alloying alloys.After solution and aging heat treatment,most of the Mg(Al,Cu,Zn)_(2) phases dissolve into theα-Al matrix,while part of Mg(Al,Cu,Zn)_(2) phases transform to Al_(2)CuMg(S)phases.However,the coarse primary Al_(3)Sc and Al_(3)(Sc,Zr)still remain in the matrix,and promote crack initiation and propagation.With the tensile strength of 553 MPa,yield strength of 463 MPa and elongation of 13.4%at T6 state,trace Ti addition generates more attractive mechanical properties than the other three alloys.
基金The authors would like to thank the financial support from the National Key R&D Program of China(No.2016YFB0301003).
文摘A systematic study on how Cu content affects the microstructure and mechanical properties of rheo-diecasting Al-6Zn-2Mg-xCu alloys during solution treatment and ageing heat treatment was conducted.The swirled enthalpy equilibrium device(SEED)was adopted to prepare the semi-solid slurry of Al-6Zn-2Mg-xCu alloys.The microstructure development and mechanical properties were studied using optical microscopy(OM),scanning electron microscopy(SEM),X-ray diffraction(XRD),differential scanning calorimetry(DSC),as well as hardness and tensile testing.The grain boundary and shape factor were calculated using image processing software(Image-Pro Plus 6.0).Results show that the alloys are composed of typical globular primaryα-Al grains,eutectic phases,and smaller secondaryα-Al grains.After solution and ageing heat treatment,the eutectic phases are dissolved into Al matrix when the Cu content is lower than 1.5wt.%,while some eutectic phases transform into Al_(2)CuMg(S)phases and remain at grain boundaries when Cu content reaches 2wt.%.T6 heat treatment significantly enhances the mechanical properties of rheo-diecasting Al-6Zn-2Mg-xCu alloys.When Cu concentration is 0.5wt.%-1.5wt.%,the ultimate tensile strength,yield strength and elongation of T6 treated alloys rise to around 500 MPa,420 MPa,and 18%,respectively.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFB0301003)the Shenzhen Free Exploring Basic Research Project (No. JCYJ20170307110223452)。
文摘In this paper,two ways of micro structural characterization,optical microscopy(OM) and polarized light microscopy(PLM),were both employed to describe the micro structure of semisolid slurry prepared by swirling enthalpy equilibration device(SEED).The results show that PLM is more reliable and accurate than OM to describe the special morphology feature of semisolid slurry made by SEED process.Meanwhile,the effects of pouring temperature and mass of molten liquid on the primary α-Al particle size and morphology were also investigated using PLM.The quantitative metallographic results measured from PLM demonstrate that the grain size and morphology and their distribution are significantly affected by both pouring temperature and the mass of molten liquid.The grain size poured with 2.7 kg liquid decreases from 659 to186 μm,and grain morphology transforms from dendrite to globular structure with pouring temperature reducing from690 to 630℃.The decreasing pouring temperature also promotes the distribution of spherical structure on the cross section.Meanwhile,the mass of molten liquid decreasing from 2.7 to 2.3 kg can decrease the grain size by maximum of 44% at high pouring temperature.
基金financially supported by the National Key Research and Development Program of China (No.2016YFB0301003)Shenzhen Science and Technology Innovation Commission under Projects (Nos.JCYJ20170307110223452,KQJSCX20170328155402991 and KQTD20170328154443162)。
文摘In the present study,numerical simulation method was used to analyze the conditions,resulting in the formation of blisters during solution heat treatment.Blister formation is considered to occur as the height of blister reaches 5μm.The effects of process parameters on the magnitude of the forming temperatures of blister(Tb)were discussed.Two kinds of Al-Si alloys were used to analyze the effect of mechanical properties of the alloys on blister forming conditions.Simulation results show that decreasing the initial pressure in gas hole,the long-short axial ratio of gas hole and the size of gas hole,as well as increasing the depth of gas hole and the strength of alloy are helpful to increase the critical temperature of forming blister.These conclusions are helpful for casters to understand the conditions controlling blister formation during solution heat treatment and take actions to avoid the blister defects.
基金financially supported by the National High Technology Research and Development Program of China (No. 2012AA03AA514)
文摘In this study, the influence of hot isostatic pressing(HIP) process on the 418 alloy produced by metal injection molding(MIM) technique(named as MIM 418)was investigated based on the characteristic analysis of 418 alloy powder. And comparison analysis of the microstructure and mechanical property between the MIM 418 and as-cast 418 alloys was performed by scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS),and X-ray diffraction(XRD). The results show that MIM418 alloy exhibits fine grain(~30 μm) and uniform microstructure. The defects existing in MIM 418 alloy formed during sintering process can be eliminated through HIP treatment, and the relative density increases from97.0 % to 99.5 %. The mechanical property can be improved significantly because of the elimination of defects, and the tensile strength and elongation are1,271 MPa and 16.8 %, respectively, which are increased by 34.5 % and 180 % compared with K418 alloy after solution heat treatment.