The atomic structure of amorphous alloys plays a crucial role in determining both their glass-forming ability and magnetic properties. In this study, we investigate the influence of adding the Y element on the glass-f...The atomic structure of amorphous alloys plays a crucial role in determining both their glass-forming ability and magnetic properties. In this study, we investigate the influence of adding the Y element on the glass-forming ability and magnetic properties of Fe_(86-x)Y_xB_7C_7(x = 0, 5, 10 at.%) amorphous alloys via both experiments and ab initio molecular dynamics simulations. Furthermore, we explore the correlation between local atomic structures and properties. Our results demonstrate that an increased Y content in the alloys leads to a higher proportion of icosahedral clusters, which can potentially enhance both glass-forming ability and thermal stability. These findings have been experimentally validated. The analysis of the electron energy density and magnetic moment of the alloy reveals that the addition of Y leads to hybridization between Y-4d and Fe-3d orbitals, resulting in a reduction in ferromagnetic coupling between Fe atoms. This subsequently reduces the magnetic moment of Fe atoms as well as the total magnetic moment of the system, which is consistent with experimental results. The results could help understand the relationship between atomic structure and magnetic property,and providing valuable insights for enhancing the performance of metallic glasses in industrial applications.展开更多
(Zr_(53)Al_(11.6)Ni_(11.7)Cu_(23.7))_(1−x)(Fe_(77.1)C_(22.9))_(x)(x=0−2.2,at.%)bulk metallic glasses(BMGs)were prepared by copper mold suction casting method.Their glass forming ability and physical and chemical prope...(Zr_(53)Al_(11.6)Ni_(11.7)Cu_(23.7))_(1−x)(Fe_(77.1)C_(22.9))_(x)(x=0−2.2,at.%)bulk metallic glasses(BMGs)were prepared by copper mold suction casting method.Their glass forming ability and physical and chemical properties were systematically investigated.The glass forming ability is firstly improved with increasing x,and then decreased when x exceeds 0.44 at.%.Both glass transition temperature and crystallization temperature are increased,while the supercooled liquid region is narrowed,with Fe−C micro-alloying.The hardness,yielding and fracture strength,and plasticity firstly increase and then decrease when x reaches up to 1.32 at.%.The plasticity of the BMG(x=1.32 at.%)is six times that of the Fe-free and C-free BMG.In addition,by the Fe−C micro-alloying,the corrosion potential is slightly decreased,while the corrosion current density increases.The pitting corrosion becomes increasingly serious with the increase of Fe and C content.展开更多
Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link....Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link.In this paper,considering the complex network with uncertain parameters,new adaptive controller and update laws are proposed to ensure that complex-valued multilink network realizes finite-time complex projective synchronization(FTCPS).In addition,based on fractional-order Lyapunov functional method and finite-time stability theory,the criteria of FTCPS are derived and synchronization time is given which is associated with fractional order and control parameters.Meanwhile,numerical example is given to verify the validity of proposed finite-time complex projection strategy and analyze the relationship between synchronization time and fractional order and control parameters.Finally,the network is applied to image encryption,and the security analysis is carried out to verify the correctness of this method.展开更多
This paper proposes a fractional-order simplest chaotic system using a bi-stable locally-active memristor.The characteristics of the memristor and transient transition behaviors of the proposed system are analyzed,and...This paper proposes a fractional-order simplest chaotic system using a bi-stable locally-active memristor.The characteristics of the memristor and transient transition behaviors of the proposed system are analyzed,and this circuit is implemented digitally using ARM-based MCU.Firstly,the mathematical model of the memristor is designed,which is nonvolatile,locally-active and bi-stable.Secondly,the asymptotical stability of the fractional-order memristive chaotic system is investigated and some sufficient conditions of the stability are obtained.Thirdly,complex dynamics of the novel system are analyzed using phase diagram,Lyapunov exponential spectrum,bifurcation diagram,basin of attractor,and coexisting bifurcation,coexisting attractors are observed.All of these results indicate that this simple system contains the abundant dynamic characteristics.Moreover,transient transition behaviors of the system are analyzed,and it is found that the behaviors of transient chaotic and transient period transition alternately occur.Finally,the hardware implementation of the fractional-order bi-stable locally-active memristive chaotic system using ARM-based STM32F750 is carried out to verify the numerical simulation results.展开更多
In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchro...In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fraetionla order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more praetical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB2401703)the National Natural Science Foundation of China(Grant Nos.52177005 and 51871234)the China Postdoctoral Science Foundation(Grant No.2022T150691)。
文摘The atomic structure of amorphous alloys plays a crucial role in determining both their glass-forming ability and magnetic properties. In this study, we investigate the influence of adding the Y element on the glass-forming ability and magnetic properties of Fe_(86-x)Y_xB_7C_7(x = 0, 5, 10 at.%) amorphous alloys via both experiments and ab initio molecular dynamics simulations. Furthermore, we explore the correlation between local atomic structures and properties. Our results demonstrate that an increased Y content in the alloys leads to a higher proportion of icosahedral clusters, which can potentially enhance both glass-forming ability and thermal stability. These findings have been experimentally validated. The analysis of the electron energy density and magnetic moment of the alloy reveals that the addition of Y leads to hybridization between Y-4d and Fe-3d orbitals, resulting in a reduction in ferromagnetic coupling between Fe atoms. This subsequently reduces the magnetic moment of Fe atoms as well as the total magnetic moment of the system, which is consistent with experimental results. The results could help understand the relationship between atomic structure and magnetic property,and providing valuable insights for enhancing the performance of metallic glasses in industrial applications.
基金This work was supported by the National Natural Science Foundation of China(No.51871234)the National Key Research and Development Program of China(No.2016YFB-0300500)the Open Fund of Key Laboratory of Materials Preparation and Protection for Harsh Environment(Nanjing University of Aeronautics and Astronautics),China,and Ministry of Industry and Information Technology,China(No.XCA19013-04).
文摘(Zr_(53)Al_(11.6)Ni_(11.7)Cu_(23.7))_(1−x)(Fe_(77.1)C_(22.9))_(x)(x=0−2.2,at.%)bulk metallic glasses(BMGs)were prepared by copper mold suction casting method.Their glass forming ability and physical and chemical properties were systematically investigated.The glass forming ability is firstly improved with increasing x,and then decreased when x exceeds 0.44 at.%.Both glass transition temperature and crystallization temperature are increased,while the supercooled liquid region is narrowed,with Fe−C micro-alloying.The hardness,yielding and fracture strength,and plasticity firstly increase and then decrease when x reaches up to 1.32 at.%.The plasticity of the BMG(x=1.32 at.%)is six times that of the Fe-free and C-free BMG.In addition,by the Fe−C micro-alloying,the corrosion potential is slightly decreased,while the corrosion current density increases.The pitting corrosion becomes increasingly serious with the increase of Fe and C content.
文摘Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link.In this paper,considering the complex network with uncertain parameters,new adaptive controller and update laws are proposed to ensure that complex-valued multilink network realizes finite-time complex projective synchronization(FTCPS).In addition,based on fractional-order Lyapunov functional method and finite-time stability theory,the criteria of FTCPS are derived and synchronization time is given which is associated with fractional order and control parameters.Meanwhile,numerical example is given to verify the validity of proposed finite-time complex projection strategy and analyze the relationship between synchronization time and fractional order and control parameters.Finally,the network is applied to image encryption,and the security analysis is carried out to verify the correctness of this method.
文摘This paper proposes a fractional-order simplest chaotic system using a bi-stable locally-active memristor.The characteristics of the memristor and transient transition behaviors of the proposed system are analyzed,and this circuit is implemented digitally using ARM-based MCU.Firstly,the mathematical model of the memristor is designed,which is nonvolatile,locally-active and bi-stable.Secondly,the asymptotical stability of the fractional-order memristive chaotic system is investigated and some sufficient conditions of the stability are obtained.Thirdly,complex dynamics of the novel system are analyzed using phase diagram,Lyapunov exponential spectrum,bifurcation diagram,basin of attractor,and coexisting bifurcation,coexisting attractors are observed.All of these results indicate that this simple system contains the abundant dynamic characteristics.Moreover,transient transition behaviors of the system are analyzed,and it is found that the behaviors of transient chaotic and transient period transition alternately occur.Finally,the hardware implementation of the fractional-order bi-stable locally-active memristive chaotic system using ARM-based STM32F750 is carried out to verify the numerical simulation results.
基金Supported by National Natural Science Foundation of China under Grant No.61201227National Natural Science Foundation of China Guangdong Joint Fund under Grant No.U1201255+2 种基金the Natural Science Foundation of Anhui Province under Grant No.1208085MF93211 Innovation Team of Anhui University under Grant Nos.KJTD007A and KJTD001Bsupported by Chinese Scholarship Council
文摘In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fraetionla order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more praetical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective.