Significant optical engineering advances at the University of Arizona are being made for design, fabrication, and construction of next generation astronomical telescopes. This summary review paper focuses on the techn...Significant optical engineering advances at the University of Arizona are being made for design, fabrication, and construction of next generation astronomical telescopes. This summary review paper focuses on the technological advances in three key areas. First is the optical fabrication technique used for constructing next-generation telescope mirrors. Advances in ground-based telescope control and instrumentation comprise the second area of development. This includes active alignment of the laser truss-based Large Binocular Telescope(LBT) prime focus camera, the new MOBIUS modular cross-dispersion spectroscopy unit used at the prime focal plane of the LBT, and topological pupil segment optimization. Lastly, future space telescope concepts and enabling technologies are discussed. Among these, the Nautilus space observatory requires challenging alignment of segmented multi-order diffractive elements. The OASIS terahertz space telescope presents unique challenges for characterizing the inflatable primary mirror, and the Hyperion space telescope pushes the limits of high spectral resolution, far-UV spectroscopy. The Coronagraphic Debris and Exoplanet Exploring Pioneer(CDEEP) is a Small Satellite(Small Sat) mission concept for high-contrast imaging of circumstellar disks and exoplanets using vector vortex coronagraph. These advances in optical engineering technologies will help mankind to probe, explore, and understand the scientific beauty of our universe.展开更多
In 2019,the Event Horizon Telescope(EHT)released the first-ever image of a black hole event horizon.Astronomers are now aiming for higher angular resolutions of distant targets,like black holes,to understand more abou...In 2019,the Event Horizon Telescope(EHT)released the first-ever image of a black hole event horizon.Astronomers are now aiming for higher angular resolutions of distant targets,like black holes,to understand more about the fundamental laws of gravity that govern our universe.To achieve this higher resolution and increased sensitivity,larger radio telescopes are needed to operate at higher frequencies and in larger quantities.Projects like the next-generation Very Large Array(ngVLA)and the Square-Kilometer Array(SKA)require building hundreds of telescopes with diameters greater than 10 ms over the next decade.This has a twofold effect.Radio telescope surfaces need to be more accurate to operate at higher frequencies,and the logistics involved in maintaining a radio telescope need to be simplified to support them properly in large quantities.Both of these problems can be solved with improved methods for surface metrology that are faster and more accurate with a higher resolution.This leads to faster and more accurate panel alignment and,therefore,a more productive observatory.In this paper,we present the use of binocular fringe projection profilometry as a solution to this problem and demonstrate it by aligning two panels on a 3-m radio telescope dish.The measurement takes only 10 min and directly delivers feedback on the tip,tilt,and piston of each panel to create the ideal reflector shape.展开更多
Dwell time plays a vital role in determining the accuracy and convergence of the computer-controlled optical surfacing process.However,optimizing dwell time presents a challenge due to its ill-posed nature,resulting i...Dwell time plays a vital role in determining the accuracy and convergence of the computer-controlled optical surfacing process.However,optimizing dwell time presents a challenge due to its ill-posed nature,resulting in non-unique solutions.To address this issue,several well-known methods have emerged,including the iterative,Bayesian,Fourier transform,and matrix-form methods.Despite their independent development,these methods share common objectives,such as minimizing residual errors,ensuring dwell time's positivity and smoothness,minimizing total processing time,and enabling flexible dwell positions.This paper aims to comprehensively review the existing dwell time optimization methods,explore their interrelationships,provide insights for their effective implementations,evaluate their performances,and ultimately propose a unified dwell time optimization methodology.展开更多
Future large-scale radio telescope observatories,such as the next-generation Very Large Array,involve extremely large collection areas.These collection areas are divided into smaller shaped panels,which typically requ...Future large-scale radio telescope observatories,such as the next-generation Very Large Array,involve extremely large collection areas.These collection areas are divided into smaller shaped panels,which typically require their own unique molds to manufacture.For these projects to be cost-effective,an efficient fabrication method for the shaped panels is needed.This paper outlines the development and success of a novel adaptive freeform panel molding technology that greatly improves manufacturing efficiency due to its repeatable and reusable nature.Moreover,it presents an analysis of a proposed panel structural design for the shaped panels,which incorporates a study on surface deformation due to gravity and wind loading under realistic operational conditions.展开更多
基金the Gordon and Betty Moore Foundation for their financial support of the development of the MODElens and its enabling alignment technologiesthe II-VI Foundation Block-Gift,Technology Research Initiative Fund Optics/Imaging Program。
文摘Significant optical engineering advances at the University of Arizona are being made for design, fabrication, and construction of next generation astronomical telescopes. This summary review paper focuses on the technological advances in three key areas. First is the optical fabrication technique used for constructing next-generation telescope mirrors. Advances in ground-based telescope control and instrumentation comprise the second area of development. This includes active alignment of the laser truss-based Large Binocular Telescope(LBT) prime focus camera, the new MOBIUS modular cross-dispersion spectroscopy unit used at the prime focal plane of the LBT, and topological pupil segment optimization. Lastly, future space telescope concepts and enabling technologies are discussed. Among these, the Nautilus space observatory requires challenging alignment of segmented multi-order diffractive elements. The OASIS terahertz space telescope presents unique challenges for characterizing the inflatable primary mirror, and the Hyperion space telescope pushes the limits of high spectral resolution, far-UV spectroscopy. The Coronagraphic Debris and Exoplanet Exploring Pioneer(CDEEP) is a Small Satellite(Small Sat) mission concept for high-contrast imaging of circumstellar disks and exoplanets using vector vortex coronagraph. These advances in optical engineering technologies will help mankind to probe, explore, and understand the scientific beauty of our universe.
基金funded by the National Science Foundation(NSF)Award 2009384.
文摘In 2019,the Event Horizon Telescope(EHT)released the first-ever image of a black hole event horizon.Astronomers are now aiming for higher angular resolutions of distant targets,like black holes,to understand more about the fundamental laws of gravity that govern our universe.To achieve this higher resolution and increased sensitivity,larger radio telescopes are needed to operate at higher frequencies and in larger quantities.Projects like the next-generation Very Large Array(ngVLA)and the Square-Kilometer Array(SKA)require building hundreds of telescopes with diameters greater than 10 ms over the next decade.This has a twofold effect.Radio telescope surfaces need to be more accurate to operate at higher frequencies,and the logistics involved in maintaining a radio telescope need to be simplified to support them properly in large quantities.Both of these problems can be solved with improved methods for surface metrology that are faster and more accurate with a higher resolution.This leads to faster and more accurate panel alignment and,therefore,a more productive observatory.In this paper,we present the use of binocular fringe projection profilometry as a solution to this problem and demonstrate it by aligning two panels on a 3-m radio telescope dish.The measurement takes only 10 min and directly delivers feedback on the tip,tilt,and piston of each panel to create the ideal reflector shape.
基金supported by the Accelerator and Detector Research Program,part of the Scientific User Facility Division of the Basic Energy Science Office of the U.S.Department of Energy(DOE),under the Field Work Proposal No.FWP-PS032This research was performed at the Optical Metrology Laboratory at the National Synchrotron Light Source II,a U.S.DOE Office of Science User Facility operated by Brookhaven National Laboratory(BNL)under Contract No.DE-SC0012704This work was performed under the BNL LDRD 17-016“Diffraction limited and wavefront preserving reflective optics development.”This work was also supported by the Natural Science Foundation of Fujian Province,China,under grant number 2022J011245.
文摘Dwell time plays a vital role in determining the accuracy and convergence of the computer-controlled optical surfacing process.However,optimizing dwell time presents a challenge due to its ill-posed nature,resulting in non-unique solutions.To address this issue,several well-known methods have emerged,including the iterative,Bayesian,Fourier transform,and matrix-form methods.Despite their independent development,these methods share common objectives,such as minimizing residual errors,ensuring dwell time's positivity and smoothness,minimizing total processing time,and enabling flexible dwell positions.This paper aims to comprehensively review the existing dwell time optimization methods,explore their interrelationships,provide insights for their effective implementations,evaluate their performances,and ultimately propose a unified dwell time optimization methodology.
基金This work was funded by the National Science Foundation(NSF)Award 2009384.
文摘Future large-scale radio telescope observatories,such as the next-generation Very Large Array,involve extremely large collection areas.These collection areas are divided into smaller shaped panels,which typically require their own unique molds to manufacture.For these projects to be cost-effective,an efficient fabrication method for the shaped panels is needed.This paper outlines the development and success of a novel adaptive freeform panel molding technology that greatly improves manufacturing efficiency due to its repeatable and reusable nature.Moreover,it presents an analysis of a proposed panel structural design for the shaped panels,which incorporates a study on surface deformation due to gravity and wind loading under realistic operational conditions.