期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Numerical Exploration of Asymmetrical Impact Dynamics: Unveiling Nonlinearities in Collision Problems and Resilience of Reinforced Concrete Structures
1
作者 AL-Bukhaiti Khalil Yanhui Liu +1 位作者 Shichun Zhao daguang han 《Structural Durability & Health Monitoring》 EI 2024年第3期223-254,共32页
This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing ongeometric, contact, and material nonlinearities, all essential in solving large deformation problems duri... This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing ongeometric, contact, and material nonlinearities, all essential in solving large deformation problems during a collision.The initial discussion revolves around the stress and strain of large deformation during a collision, followedby explanations of the fundamental finite element solution method for addressing such issues. The hourglassmode’s control methods, such as single-point reduced integration and contact-collision algorithms are detailedand implemented within the finite element framework. The paper further investigates the dynamic responseand failure modes of Reinforced Concrete (RC) members under asymmetrical impact using a 3D discrete modelin ABAQUS that treats steel bars and concrete connections as bond slips. The model’s validity was confirmedthrough comparisons with the node-sharing algorithm and system energy relations. Experimental parameterswere varied, including the rigid hammer’s mass and initial velocity, concrete strength, and longitudinal and stirrupreinforcement ratios. Findings indicated that increased hammer mass and velocity escalated RC member damage,while increased reinforcement ratios improved impact resistance. Contrarily, increased concrete strength did notsignificantly reduce lateral displacement when considering strain rate effects. The study also explores materialnonlinearity, examining different materials’ responses to collision-induced forces and stresses, demonstratedthrough an elastic rod impact case study. The paper proposes a damage criterion based on the residual axialload-bearing capacity for assessing damage under the asymmetrical impact, showing a correlation betweendamage degree hammer mass and initial velocity. The results, validated through comparison with theoreticaland analytical solutions, verify the ABAQUS program’s accuracy and reliability in analyzing impact problems,offering valuable insights into collision and impact problems’ nonlinearities and practical strategies for enhancingRC structures’ resilience under dynamic stress. 展开更多
关键词 Geometric nonlinearity contact nonlinearity material nonlinearity collision problems finite element method stress and strain damage criterion RC members asymmetrical impact
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部