期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Personal Thermal Management by Radiative Cooling and Heating
1
作者 Shidong Xue Guanghan Huang +3 位作者 Qing Chen Xungai Wang Jintu Fan dahua shou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期225-267,共43页
Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building hea... Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications. 展开更多
关键词 Personal thermal management Radiative cooling and heating Thermal comfort Dynamic thermoregulation
下载PDF
Dual-Driven Hemostats Featured with Puncturing Erythrocytes for Severe Bleeding in Complex Wounds
2
作者 Haoyu Qiu Guangqian Lan +8 位作者 Weiwei Ding Xinyu Wang Wenyi Wang dahua shou Fei Lu Enling Hu Kun Yu Songmin Shang Ruiqi Xie 《Research》 EI CAS CSCD 2022年第4期119-135,共17页
Achieving rapid hemostasis in complex and deep wounds with secluded hemorrhagic sites is still a challenge because of the difficulty in delivering hemostats to these sites.In this study,a Janus particle,SEC-Fe@CaT wit... Achieving rapid hemostasis in complex and deep wounds with secluded hemorrhagic sites is still a challenge because of the difficulty in delivering hemostats to these sites.In this study,a Janus particle,SEC-Fe@CaT with dual-driven forces,bubble-driving,and magnetic field–(MF–)mediated driving,was prepared via in situ loading of Fe_(3)O_(4) on a sunflower sporopollenin exine capsule(SEC),and followed by growth of flower-shaped CaCO3 clusters.The bubble-driving forces enabled SEC-Fe@CaT to self-diffuse in the blood to eliminate agglomeration,and the MF-mediated driving force facilitated the SEC-Fe@CaT countercurrent against blood to access deep bleeding sites in the wounds.During the movement in blood flow,the meteor hammer-like SEC from SEC-Fe@CaT can puncture red blood cells(RBCs)to release procoagulants,thus promoting activation of platelet and rapid hemostasis.Animal tests suggested that SEC-Fe@CaT stopped bleeding in as short as 30 and 45 s in femoral artery and liver hemorrhage models,respectively.In contrast,the similar commercial product Celox™required approximately 70 s to stop the bleeding in both bleeding modes.This study demonstrates a new hemostat platform for rapid hemostasis in deep and complex wounds.It was the first attempt integrating geometric structure of sunflower pollen with dual-driven movement in hemostasis. 展开更多
关键词 driving BUBBLE eliminate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部