Let 0<λ_1,λ_2<1 and 1-λ_1-λ_2≥max{λ_1,λ_2}.Let ~K(λ_1,λ_2) be the attractor of the iterated function system {φ_1,φ_2}on the line,where φ_1(x)=λ_1x and φ_2(x)=1-λ_2+λ_2x,x∈R.~K(λ_1,λ_2) is ...Let 0<λ_1,λ_2<1 and 1-λ_1-λ_2≥max{λ_1,λ_2}.Let ~K(λ_1,λ_2) be the attractor of the iterated function system {φ_1,φ_2}on the line,where φ_1(x)=λ_1x and φ_2(x)=1-λ_2+λ_2x,x∈R.~K(λ_1,λ_2) is called a non-symmetry Cantor set. In this paper,it is proved that the exact Hausdorff centred measure of K(λ_1,λ_2) equals 2s(1-λ)s,where λ=max{λ_1,λ_2} and s is the Hausdorff dimension of K(λ_1,λ_2).展开更多
文摘Let 0<λ_1,λ_2<1 and 1-λ_1-λ_2≥max{λ_1,λ_2}.Let ~K(λ_1,λ_2) be the attractor of the iterated function system {φ_1,φ_2}on the line,where φ_1(x)=λ_1x and φ_2(x)=1-λ_2+λ_2x,x∈R.~K(λ_1,λ_2) is called a non-symmetry Cantor set. In this paper,it is proved that the exact Hausdorff centred measure of K(λ_1,λ_2) equals 2s(1-λ)s,where λ=max{λ_1,λ_2} and s is the Hausdorff dimension of K(λ_1,λ_2).