Evoked potentials (EPs) have been widely used to quantify neurological system properties. Tra-ditional EP analysis methods are developed under the condition that the background noises in EP are Gaussian distributed. A...Evoked potentials (EPs) have been widely used to quantify neurological system properties. Tra-ditional EP analysis methods are developed under the condition that the background noises in EP are Gaussian distributed. Alpha stable distribution, a generalization of Gaussian, is better for modeling impulsive noises than Gaussian distribution in biomedical signal proc-essing. Conventional blind separation and es-timation method of evoked potentials is based on second order statistics or high order Statis-tics. Conventional blind separation and estima-tion method of evoked potentials is based on second order statistics (SOS). In this paper, we propose a new algorithm based on minimum dispersion criterion and fractional lower order statistics. The simulation experiments show that the proposed new algorithm is more robust than the conventional algorithm.展开更多
文摘Evoked potentials (EPs) have been widely used to quantify neurological system properties. Tra-ditional EP analysis methods are developed under the condition that the background noises in EP are Gaussian distributed. Alpha stable distribution, a generalization of Gaussian, is better for modeling impulsive noises than Gaussian distribution in biomedical signal proc-essing. Conventional blind separation and es-timation method of evoked potentials is based on second order statistics or high order Statis-tics. Conventional blind separation and estima-tion method of evoked potentials is based on second order statistics (SOS). In this paper, we propose a new algorithm based on minimum dispersion criterion and fractional lower order statistics. The simulation experiments show that the proposed new algorithm is more robust than the conventional algorithm.