期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
氮掺杂碳纳米管包覆Fe_(0.64)Ni_(0.36)@Fe_(3)NiN核壳结构用于高稳定锌-空气电池
1
作者 蒲晨 邓代洁 +1 位作者 李赫楠 徐丽 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第2期98-99,共2页
可逆锌-空气电池因其高功率密度和环境友好性而得到了广泛研究。然而,氧还原反应(ORR)和氧析出反应(OER)的缓慢动力学限制了其实际应用。迄今为止,二氧化铱和二氧化钌被认为是氧还原反应的最佳电催化剂,同时铂碳被认为是最有效的氧还原... 可逆锌-空气电池因其高功率密度和环境友好性而得到了广泛研究。然而,氧还原反应(ORR)和氧析出反应(OER)的缓慢动力学限制了其实际应用。迄今为止,二氧化铱和二氧化钌被认为是氧还原反应的最佳电催化剂,同时铂碳被认为是最有效的氧还原反应的电催化剂。然而,由于Pt、Ir和Ru的天然丰度低、成本高的原因,它们在ZABs中的实际应用严格受限。因此,探索低成本和高性能的双功能催化剂对促进可充电锌-空气电池的发展至关重要。具有高导电性、低氧还原反应能垒的过渡金属合金可作为有潜力的氧还原电催化剂。然而,为提高过渡金属合金催化剂的双功能催化活性,可构筑过渡金属合金@过渡金属氮化物的核壳结构。在此,我们设计了一种氮掺杂碳纳米管包覆Fe_(0.64)Ni_(0.36)@Fe_(3)NiN核壳结构(Fe_(0.64)Ni_(0.36)@Fe_(3)NiN/NCNT)的双功能电催化剂,其具有高效的双功能催化活性。核壳结构可以为ORR/OER产生更多的活性点。Fe_(0.64)Ni_(0.36)核具有高导电性,有助于电荷转移。Fe_(3)NiN壳有助于提升催化剂的OER性能。氮掺杂碳纳米管不仅能够有效增强传质效应和内部电荷传递,还可以提升其电化学活性表面积。此外,具有高抗腐蚀性能的Fe_(3)NiN外壳可以有效地保护Fe_(0.64)Ni_(0.36)内核,从而提高了电化学过程中催化剂的稳定性。氮掺杂碳纳米管对Fe_(0.64)Ni_(0.36)@Fe_(3)NiN核壳结构也具有一定的保护作用,因此Fe_(0.64)Ni_(0.36)@Fe_(3)NiN/NCNT表现出优异的稳定性。Fe_(0.64)Ni_(0.36)@Fe_(3)NiN/NCNT催化剂表现出优异的双功能氧电催化性能,ORR的半波电位为0.88 V,在10mA·cm^(-2)时的OER过电位为380 mV,以及高电化学稳定性(8 h后电流密度剩余92.8%)。此外,与基于Pt/C+IrO_(2)(155 mW·cm^(-2))和Fe_(0.64)Ni_(0.36)/NCNT(89 mW·cm^(-2))的锌-空气电池相比,基于Fe_(0.64)Ni_(0.36)@FeNiN/NCNT的锌-空气电池展现出更高的功率密度(214 mW·cm^(-2)),提供781mAh·g^(-1)的高容量,并展现出了超长的循环稳定性(循环寿命超过1100 h)。我们相信这项工作将对于新型催化剂设计有所启发,从而实现高度稳定和高效的锌-空气电池。 展开更多
关键词 双功能电催化剂 Fe_(3)NiN 核壳结构 锌-空气电池 长循环寿命
下载PDF
Electronic structure and spin state regulation of vanadium nitride via a sulfur doping strategy toward flexible zinc-air batteries
2
作者 daijie deng Honghui Zhang +6 位作者 Jianchun Wu Xing Tang Min Ling Sihua Dong Li Xu Henan Li Huaming Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期239-249,I0007,共12页
Owing to the distinctive structural characteristics,vanadium nitride(VN)is highly regarded as a catalyst for oxygen reduction reaction(ORR)in zinc-air batteries(ZABs).However,VN exhibits limited intrinsic ORR activity... Owing to the distinctive structural characteristics,vanadium nitride(VN)is highly regarded as a catalyst for oxygen reduction reaction(ORR)in zinc-air batteries(ZABs).However,VN exhibits limited intrinsic ORR activity due to the weak adsorption ability to O-containing species.Here,the S-doped VN anchored on N,S-doped multi-dimensional carbon(S-VN/Co/NS-MC)was constructed using the solvothermal and in-situ doping methods.Incorporating sulfur atoms into VN species alters the electron spin state of vanadium in the S-VN/Co/NS-MC for regulating the adsorption energy of vanadium sites to oxygen molecules.The introduced sulfur atoms polarize the V 3d_(z)^(2) electrons,shifting spin-down electrons closer to the Fermi level in the S-VN/Co/NS-MC.Consequently,the introduction of sulfur atoms into VN species enhances the adsorption energy of vanadium sites for oxygen molecules.The*OOH dissociation transitions from being unspontaneous on the VN surface to a spontaneous state on the S-doped VN surface.Then,the ORR barrier on the S-VN/Co/NS-MC surface is reduced.The S-VN/Co/NS-MC demonstrates a higher half-wave potential and limiting current density compared to the VN/Co/N-MC.The S-VN/Co/NS-MC-based liquid ZABs display a power density of 195.7 m W cm^(-2),a specific capacity of 815.7 m A h g^(-1),and a cycling stability exceeding 250 h.The S-VN/Co/NS-MC-based flexible ZABs are successfully employed to charge both a smart watch and a mobile phone.This approach holds promise for advancing the commercial utilization of VN-based catalysts in ZABs. 展开更多
关键词 S-doped VN Electronic structures Spin state regulation Oxygen reduction reaction Zinc-air batteries
下载PDF
Strategies for Sustainable Production of Hydrogen Peroxide via Oxygen Reduction Reaction:From Catalyst Design to Device Setup 被引量:1
3
作者 Yuhui Tian daijie deng +4 位作者 Li Xu Meng Li Hao Chen Zhenzhen Wu Shanqing Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期225-269,共45页
An environmentally benign,sustainable,and cost-effective supply of H_(2)O_(2)as a rapidly expanding consumption raw material is highly desired for chemical industries,medical treatment,and household disinfection.The e... An environmentally benign,sustainable,and cost-effective supply of H_(2)O_(2)as a rapidly expanding consumption raw material is highly desired for chemical industries,medical treatment,and household disinfection.The electrocatalytic production route via electrochemical oxygen reduction reaction(ORR)offers a sustainable avenue for the onsite production of H_(2)O_(2)from O2 and H2O.The most crucial and innovative part of such technology lies in the availability of suitable electrocatalysts that promote two-electron(2e^(–))ORR.In recent years,tremendous progress has been achieved in designing efficient,robust,and cost-effective catalyst materials,including noble metals and their alloys,metalfree carbon-based materials,single-atom catalysts,and molecular catalysts.Meanwhile,innovative cell designs have significantly advanced electrochemical applications at the industrial level.This review summarizes fundamental basics and recent advances in H_(2)O_(2)production via 2e^(–)-ORR,including catalyst design,mechanistic explorations,theoretical computations,experimental evaluations,and electrochemical cell designs.Perspectives on addressing remaining challenges are also presented with an emphasis on the large-scale synthesis of H_(2)O_(2)via the electrochemical route. 展开更多
关键词 Hydrogen peroxide Electrochemical synthesis ELECTROCATALYSTS Sustainable technologies
下载PDF
Regulated electronic structure and improved electrocatalytic performances of S-doped FeWO4 for rechargeable zinc-air batteries
4
作者 Huan Wang Li Xu +3 位作者 daijie deng Xiaozhi Liu Henan Li Dong Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期359-367,I0009,共10页
The exploration of active and long-lived oxygen reduction reaction(ORR)catalysts for the commercialization of zinc-air batteries are of immense significance but challenging.Herein,the sulfur doped FeWO_(4)embedded in ... The exploration of active and long-lived oxygen reduction reaction(ORR)catalysts for the commercialization of zinc-air batteries are of immense significance but challenging.Herein,the sulfur doped FeWO_(4)embedded in the multi-dimensional nitrogen-doped carbon structure(S-FeWO_(4)/NC)was successfully synthesized.The doped S atoms optimized the charge distribution in FeWO_(4)and enhanced the intrinsic activity.At the same time,S doping accelerated the formation of reaction intermediates during the adsorption reduction of O_(2)on the surface of S-FeWO_(4)/NC.Accordingly,the S-FeWO_(4)/NC catalyst showed more positive half-wave potential(0.85 V)and better stability than that of the FeWO_(4)/NC catalyst.Furthermore,the S-FeWO_(4)/NC-based zinc-air battery exhibited considerable power density of 150.3m W cm^(-2),high specific capacity of 912.7 m A h g^(-1),and prominent cycle stability up to 220 h.This work provides an assistance to the development of cheap and efficient tungsten-based oxygen reduction catalysts and the promotion of its application in the zinc-air battery. 展开更多
关键词 S doping FeWO4 Oxygen reduction reaction Zinc-air batteries
下载PDF
Engineering Electronic Density and Coordination Environment of Mn–Nx Sites via Zn Cooperation for Quasi-Solid-State Zinc-Air Batteries 被引量:2
5
作者 daijie deng Huixin Ma +7 位作者 Suqin Wu Huan Wang Junchao Qian Jianchun Wu Huaming Li Cheng Yan Henan Li Li Xu 《Renewables》 2023年第3期362-372,共11页
Due to the poor Fenton reactivity,single-atom Mn-based materials are generally identified as one of the most promising active catalysts for oxygen reduction reaction(ORR).Regulating the electronic density and coordina... Due to the poor Fenton reactivity,single-atom Mn-based materials are generally identified as one of the most promising active catalysts for oxygen reduction reaction(ORR).Regulating the electronic density and coordination environment of atomically dispersed Mn centers is an effective strategy to enhance ORR activity of Mn-based materials.By introducing Zn sites,atomically dispersed Mn centers with multitudes of coordination(including Zn/Mn–Nx and Mn–Nx moieties)can be constructed to form Mn-based ORR catalyst(Zn/Mn-NC)with dual-atom sites.Around Mn–Nx sites,the Zn atoms can effectively modulate the electronic structure and coordination state of Mn centers in Zn/Mn-NC through d–d orbital coupling.The electronic interaction between Zn and Mn sites improves ORR activity,thereby optimizing the oxygen adsorption energy of Mn sites in Zn/Mn-NC and reducing the overall energy barrier.Zn/Mn-NC displays higher ORR half-wave potential than Pt/C(0.89 V vs 0.86 V).The quasi-solid-state zinc-air battery(ZAB)with Zn/Mn-NC as the cathode displayed excellent rechargeability,recyclability,and mechanical robustness.The strategy presented regulates the electronic density and coordination environment of singleatom Mn-based ORR catalysts in quasi-solid-state ZABs. 展开更多
关键词 quasi-solid-state zinc-air batteries oxygen reduction reaction dual-atom sites Mn-Nx Zn/Mn-Nx
原文传递
Development of Transition Metal Nitrides as Oxygen and Hydrogen Electrocatalysts 被引量:1
6
作者 Xuesheng Yan daijie deng +2 位作者 Suqin Wu Henan Li Li Xu 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2022年第7期4-15,共12页
With the increasing demand for energy, various emerging energy storage/conversion technologies have gradually penetrated human life, providing numerous conveniences. The practical application efficiency is often affec... With the increasing demand for energy, various emerging energy storage/conversion technologies have gradually penetrated human life, providing numerous conveniences. The practical application efficiency is often affected by the slow kinetics of hydrogen or oxygen electrocatalytic reactions(hydrogen evolution and oxidation reactions, oxygen evolution and reduction reactions) among the emerging devices. Therefore, the researchers devote to finding cost-effective electrocatalysts. Non-noble metal catalysts have low cost and good catalytic activity, but poor stability, agglomeration, dissolution, and other problems will occur after a long cycle, such as transition metal oxides and carbides. Transition metal nitrides(TMNs) stand out among all kinds of non-noble metal catalysts because of the intrinsic platinum-like electrocatalytic activities, relatively high conductivity, and wide range of tunability. In this review, the applications of TMNs in electrocatalytic fields are summarized based on the number of metals contained in TMNs. The practical application potentials of TMNs in fuel cell, water splitting, zinc-air battery and other electrochemical energy storage/conversion devices are also listed. Finally, the design strategies and viewpoints of TMNs-based electrocatalyst are summarized. The potential challenges of TMNs-based electrocatalyst in the development of electrocatalytic energy devices in the future are prospected. 展开更多
关键词 transition metal nitrides HYDROGEN OXYGEN improvement strategies ELECTROCATALYSTS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部