The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2) reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into...The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2) reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into the symmetric nickel-nitrogen-carbon(Ni-N_(4)-C)configuration to obtain Ni-X-N_(3)-C(X:S,Se,and Te)SACs with asymmetric coordination presented for central Ni atoms.Among these obtained Ni-X-N_(3)-C(X:S,Se,and Te)SACs,Ni-Se-N_(3)-C exhibited superior eCO_(2)RR activity,with CO selectivity reaching~98% at-0.70 V versus reversible hydrogen electrode(RHE).The Zn-CO_(2) battery integrated with Ni-Se-N_(3)-C as cathode and Zn foil as anode achieved a peak power density of 1.82 mW cm^(-2) and maintained remarkable rechargeable stability over 20 h.In-situ spectral investigations and theoretical calculations demonstrated that the chalcogen heteroatoms doped into the Ni-N_(4)-C configuration would break coordination symmetry and trigger charge redistribution,and then regulate the intermediate behaviors and thermodynamic reaction pathways for eCO_(2)RR.Especially,for Ni-Se-N_(3)-C,the introduced Se atoms could significantly raise the d-band center of central Ni atoms and thus remarkably lower the energy barrier for the rate-determining step of ^(*)COOH formation,contributing to the promising eCO_(2)RR performance for high selectivity CO production by competing with hydrogen evolution reaction.展开更多
Highly selective production of value-added multicarbon(C^(2+))products via electrochemical CO_(2) reduction reaction(eCO_(2)RR)on polycrystalline copper(Cu)remains challenging.Herein,the facile surface modification us...Highly selective production of value-added multicarbon(C^(2+))products via electrochemical CO_(2) reduction reaction(eCO_(2)RR)on polycrystalline copper(Cu)remains challenging.Herein,the facile surface modification using poly(α-ethyl cyanoacrylate)(PECA)is presented to greatly enhance the C^(2+)selectivity for eCO_(2)RR over polycrystalline Cu,with Faradaic efficiency(FE)towards C^(2+)products increased from30.1%for the Cu electrode to 72.6%for the obtained Cu-PECA electrode at-1.1 V vs.reversible hydrogen electrode(RHE).Given the well-determined FEs towards C^(2+)products,the partial current densities for C^(2+)production could be estimated to be-145.4 mA cm~(-2)for the Cu-PECA electrode at-0.9 V vs.RHE in a homemade flow cell.In-situ spectral characterizations and theoretical calculations reveal that PECA featured with electron-accepting-C≡N and-COOR groups decorated onto the Cu electrode could inhibit the adsorption of^(*)H intermediates and stabilize the^(*)CO intermediates,given the redistributed interfacial electron density and the raised energy level of d-band center(E_(d))of Cu active sites,thus facilitating the C-C coupling and then the C^(2+)selective production.This study is believed to be guidable to the modification of electrocatalysts and electrodes with polymers to steer the surface adsorption behaviors of reaction intermediates to realize practical eCO_(2)RR towards value-added C^(2+)products with high activity and selectivity.展开更多
A novel metal/semiconductor photocatalyst,Cu nanoparticles(NPs)modified TiO2 hollow spheres(Cu/TiO2),was designed for efficient photocatalytic overall water splitting(POWS)under both ultraviolet(UV)and visible(Vis)lig...A novel metal/semiconductor photocatalyst,Cu nanoparticles(NPs)modified TiO2 hollow spheres(Cu/TiO2),was designed for efficient photocatalytic overall water splitting(POWS)under both ultraviolet(UV)and visible(Vis)light.This Cu/TiO2 photocatalyst possesses excellent POWS performance under Vis light at the highest level among the reported TiO2-based photocatalysts.Interestingly,the metal/semiconductor junction formed between Cu and TiO2 enables controlled water-oxidation product selectivity(H2O2 or O2)via different reaction pathways regulated by irradiation wavelengths.Under UV light,the electrons excited in TiO2 are captured by Cu NPs through the Cu/TiO2 Schottky interface for H2 production,with the photoholes in TiO2 producing H2O2 through a two-electron process;whilst under Vis light,Cu NPs act as plasmon to inject hot electrons to TiO2 for H2 production,while O2 is produced by hot holes on Cu NPs via a four-electron process.This rational design of function-switchable metal/semiconductor junction may be helpful to understand the mechanisms for POWS with desired gas/liquid water-oxidation products.展开更多
文摘The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2) reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into the symmetric nickel-nitrogen-carbon(Ni-N_(4)-C)configuration to obtain Ni-X-N_(3)-C(X:S,Se,and Te)SACs with asymmetric coordination presented for central Ni atoms.Among these obtained Ni-X-N_(3)-C(X:S,Se,and Te)SACs,Ni-Se-N_(3)-C exhibited superior eCO_(2)RR activity,with CO selectivity reaching~98% at-0.70 V versus reversible hydrogen electrode(RHE).The Zn-CO_(2) battery integrated with Ni-Se-N_(3)-C as cathode and Zn foil as anode achieved a peak power density of 1.82 mW cm^(-2) and maintained remarkable rechargeable stability over 20 h.In-situ spectral investigations and theoretical calculations demonstrated that the chalcogen heteroatoms doped into the Ni-N_(4)-C configuration would break coordination symmetry and trigger charge redistribution,and then regulate the intermediate behaviors and thermodynamic reaction pathways for eCO_(2)RR.Especially,for Ni-Se-N_(3)-C,the introduced Se atoms could significantly raise the d-band center of central Ni atoms and thus remarkably lower the energy barrier for the rate-determining step of ^(*)COOH formation,contributing to the promising eCO_(2)RR performance for high selectivity CO production by competing with hydrogen evolution reaction.
基金supported by the National Natural Science Foundation of China(52225606,52488201)the Fundamental Research Funds for the Central UniversitiesThe Youth Innovation Team of Shaanxi Universities。
文摘Highly selective production of value-added multicarbon(C^(2+))products via electrochemical CO_(2) reduction reaction(eCO_(2)RR)on polycrystalline copper(Cu)remains challenging.Herein,the facile surface modification using poly(α-ethyl cyanoacrylate)(PECA)is presented to greatly enhance the C^(2+)selectivity for eCO_(2)RR over polycrystalline Cu,with Faradaic efficiency(FE)towards C^(2+)products increased from30.1%for the Cu electrode to 72.6%for the obtained Cu-PECA electrode at-1.1 V vs.reversible hydrogen electrode(RHE).Given the well-determined FEs towards C^(2+)products,the partial current densities for C^(2+)production could be estimated to be-145.4 mA cm~(-2)for the Cu-PECA electrode at-0.9 V vs.RHE in a homemade flow cell.In-situ spectral characterizations and theoretical calculations reveal that PECA featured with electron-accepting-C≡N and-COOR groups decorated onto the Cu electrode could inhibit the adsorption of^(*)H intermediates and stabilize the^(*)CO intermediates,given the redistributed interfacial electron density and the raised energy level of d-band center(E_(d))of Cu active sites,thus facilitating the C-C coupling and then the C^(2+)selective production.This study is believed to be guidable to the modification of electrocatalysts and electrodes with polymers to steer the surface adsorption behaviors of reaction intermediates to realize practical eCO_(2)RR towards value-added C^(2+)products with high activity and selectivity.
基金the National Natural Science Foundation of China(51672210 and 21875183)the National Key Research and Development Program of China(2017YFE0193900)+2 种基金National Program for Support of Top-notch Young ProfessionalsFundamental Research Funds for the Central Universities,Natural Science Basic Research Plan in Shaanxi Province of China(2018JQ2028)China Postdoctoral Science Foundation(2018M640981)。
文摘A novel metal/semiconductor photocatalyst,Cu nanoparticles(NPs)modified TiO2 hollow spheres(Cu/TiO2),was designed for efficient photocatalytic overall water splitting(POWS)under both ultraviolet(UV)and visible(Vis)light.This Cu/TiO2 photocatalyst possesses excellent POWS performance under Vis light at the highest level among the reported TiO2-based photocatalysts.Interestingly,the metal/semiconductor junction formed between Cu and TiO2 enables controlled water-oxidation product selectivity(H2O2 or O2)via different reaction pathways regulated by irradiation wavelengths.Under UV light,the electrons excited in TiO2 are captured by Cu NPs through the Cu/TiO2 Schottky interface for H2 production,with the photoholes in TiO2 producing H2O2 through a two-electron process;whilst under Vis light,Cu NPs act as plasmon to inject hot electrons to TiO2 for H2 production,while O2 is produced by hot holes on Cu NPs via a four-electron process.This rational design of function-switchable metal/semiconductor junction may be helpful to understand the mechanisms for POWS with desired gas/liquid water-oxidation products.