Airfoil self-noise is a common phenomenon for many engineering applications. Aiming to study the underlying mechanism of airfoil self-noise at low Mach number and moderate Reynolds number flow, a numerical investigati...Airfoil self-noise is a common phenomenon for many engineering applications. Aiming to study the underlying mechanism of airfoil self-noise at low Mach number and moderate Reynolds number flow, a numerical investigation is presented on noise generation by flow past NACA0018 airfoil. Based on a high-order accurate numerical method, both the near-field hydrodynamics and the far-field acoustics are computed simultaneously by performing direct numerical simulation. The mean flow properties agree well with the experimental measurements. The characteristics of aerodynamic noise are investigated at various angles of attack. The obtained results show that inclining the airfoil could enlarge turbulent intensity and produce larger scale of vortices. The sound radiation is mainly towards the upper and lower directions of the airfoil surface. At higher angle of attack, the tonal noise tends to disappear and the noise spectrum displays broad-band features.展开更多
A model-scale test with single-stream nozzle exhaust geometries was carried out at the anechoic chamber of Beihang University in Beijing, China. The spectral characteristics are investigated, and the effects of the fo...A model-scale test with single-stream nozzle exhaust geometries was carried out at the anechoic chamber of Beihang University in Beijing, China. The spectral characteristics are investigated, and the effects of the following parametric variations are reported in this paper: impact of nozzle operating conditions on spectra; impact of the presence of a plug; and effectiveness of chevron configurations for noise mitigation. The measurement shows that the change of pressure values has more impact on spectra than the change of temperature values. The spectral change due to pressure is shown at all band numbers for unheated conditions whereas it is more pronounced at highfrequency ranges for heated conditions. An impact of the presence of a plug is also clearly observed.The reduction of noise is moderate up to band number of 35, and becomes more significant at higher band numbers. It is observed that chevron nozzles are more efficient at high pressure and temperature values. It is expected that the quantified analysis will be used to develop an empirical model of single jet noise, which will be the baseline for the development of prediction of noise from turbofan engines of high bypass ratios.展开更多
基金supported by the National Natural Science Foundation of China(10972022)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20091102110011)the 111 Projects B07009 of China
文摘Airfoil self-noise is a common phenomenon for many engineering applications. Aiming to study the underlying mechanism of airfoil self-noise at low Mach number and moderate Reynolds number flow, a numerical investigation is presented on noise generation by flow past NACA0018 airfoil. Based on a high-order accurate numerical method, both the near-field hydrodynamics and the far-field acoustics are computed simultaneously by performing direct numerical simulation. The mean flow properties agree well with the experimental measurements. The characteristics of aerodynamic noise are investigated at various angles of attack. The obtained results show that inclining the airfoil could enlarge turbulent intensity and produce larger scale of vortices. The sound radiation is mainly towards the upper and lower directions of the airfoil surface. At higher angle of attack, the tonal noise tends to disappear and the noise spectrum displays broad-band features.
文摘A model-scale test with single-stream nozzle exhaust geometries was carried out at the anechoic chamber of Beihang University in Beijing, China. The spectral characteristics are investigated, and the effects of the following parametric variations are reported in this paper: impact of nozzle operating conditions on spectra; impact of the presence of a plug; and effectiveness of chevron configurations for noise mitigation. The measurement shows that the change of pressure values has more impact on spectra than the change of temperature values. The spectral change due to pressure is shown at all band numbers for unheated conditions whereas it is more pronounced at highfrequency ranges for heated conditions. An impact of the presence of a plug is also clearly observed.The reduction of noise is moderate up to band number of 35, and becomes more significant at higher band numbers. It is observed that chevron nozzles are more efficient at high pressure and temperature values. It is expected that the quantified analysis will be used to develop an empirical model of single jet noise, which will be the baseline for the development of prediction of noise from turbofan engines of high bypass ratios.