期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Big data-enabled multiscale serviceability analysis for aging bridges 被引量:5
1
作者 Yu Liang dalei wu +4 位作者 Guirong Liu Yaohang Li Cuilan Gao Zhongguo John Ma Weidong wu 《Digital Communications and Networks》 SCIE 2016年第3期97-107,共11页
下载PDF
A novel PGAM5 inhibitor LFHP-1c protects bloodebrain barrier integrity in ischemic stroke 被引量:1
2
作者 Chenglong Gao Yazhou Xu +8 位作者 Zhuangzhuang Liang Yunjie Wang Qinghong Shang Shengbin Zhang Cunfang Wang Mingmin Ni dalei wu Zhangjian Huang Tao Pang 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2021年第7期1867-1884,共18页
Bloodebrain barrier(BBB)damage after ischemia significantly influences stroke outcome.Compound LFHP-1 c was previously discovered with neuroprotective role in stroke model,but its mechanism of action on protection of ... Bloodebrain barrier(BBB)damage after ischemia significantly influences stroke outcome.Compound LFHP-1 c was previously discovered with neuroprotective role in stroke model,but its mechanism of action on protection of BBB disruption after stroke remains unknown.Here,we show that LFHP-1 c,as a direct PGAM5 inhibitor,prevented BBB disruption after transient middle cerebral artery occlusion(tMCAO)in rats.Mechanistically,LFHP-1 c binding with endothelial PGAM5 not only inhibited the PGAM5 phosphatase activity,but also reduced the interaction of PGAM5 with NRF2,which facilitated nuclear translocation of NRF2 to prevent BBB disruption from ischemia.Furthermore,LFHP-1 c administration by targeting PGAM5 shows a trend toward reduced infarct volume,brain edema and neurological deficits in nonhuman primate Macaca fascicularis model with t MCAO.Thus,our study identifies compound LFHP-1 c as a firstly direct PGAM5 inhibitor showing amelioration of ischemia-induced BBB disruption in vitro and in vivo,and provides a potentially therapeutics for brain ischemic stroke. 展开更多
关键词 Ischemic stroke Bloodebrain barrier Brain microvascular endothelial cells Target identification Surface plasmon resonance PGAM5 NRF2 LFHP-1c
原文传递
Development of MEMS directed evolution strategy for multiplied throughput and convergent evolution of cytochrome P450 enzymes
3
作者 Li Ma Fengwei Li +12 位作者 Xingwang Zhang Hui Chen Qian Huang Jing Su Xiaohui Liu Tianjian Sun Bo Fang Kun Liu Dandan Tang dalei wu Wei Zhang Lei Du Shengying Li 《Science China(Life Sciences)》 SCIE CAS CSCD 2022年第3期550-560,共11页
Directed evolution(DE)inspired by natural evolution(NE)has been achieving tremendous successes in protein/enzyme engineering.However,the conventional"one-protein-for-one-task"DE cannot match the"multi-p... Directed evolution(DE)inspired by natural evolution(NE)has been achieving tremendous successes in protein/enzyme engineering.However,the conventional"one-protein-for-one-task"DE cannot match the"multi-proteins-for-multi-tasks"NE in terms of screening throughput and efficiency,thus often failing to meet the fast-growing demands for biocatalysts with desired properties.In this study,we design a novel"multi-enzymes-for-multi-substrates"(MEMS)DE model and establish the proof-ofconcept by running a NE-mimicking and higher-throughput screening on the basis of"two-P450 s-against-seven-substrates"(2P×7S)in one pot.With the multiplied throughput and improved hit rate,we witness a series of convergent evolution events of the two archetypal cytochrome P450 enzymes(P450 BM3 and P450 cam)in laboratory.It is anticipated that the new strategy of MEMS DE will find broader application for a larger repertoire of enzymes in the future.Furthermore,structural and substrate docking analysis of the two functionally convergent P450 variants provide important insights into how distinct P450 active-sites can reach a common catalytic goal. 展开更多
关键词 MEMS directed evolution cytochrome P450 enzymes high-throughput screening convergent evolution ambroxide 3β-hydroxylase
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部