期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Quad-Band Rectenna for RF Energy Harvesting System
1
作者 dalia elsheakh Mina Farouk +1 位作者 Hala Elsadek Hani Ghali 《Journal of Electromagnetic Analysis and Applications》 2020年第5期57-70,共14页
The design of multiband microstrip rectenna for radio frequency energy harvesting applications is presented in this paper. The designed antenna has good performance in the GSM-900/1800, WiFi and WLAN bands. In additio... The design of multiband microstrip rectenna for radio frequency energy harvesting applications is presented in this paper. The designed antenna has good performance in the GSM-900/1800, WiFi and WLAN bands. In addition, the rectifier circuit is designed at multi resonant frequencies to collect the largest amount of RF ambient power from different RF sources. The developed antenna is matched with the rectifier at four desired frequencies using several rectifier branches to collect the largest of RF power. The proposed rectenna is printed on FR4 substrate with modified ground plane to achieve suitable impedance bandwidth. The proposed antenna consists of elliptical radiating plane with stubs and stepped modified ground plane. The rectenna resonates at quad frequency bands at (GSM 900/1800, WiFi band and WLAN bands) with rectifier power conversion efficiency up to 56.4% at 0 dBm input power using the HSMS-2850 Schottky diode. The efficiency is more enhanced by using SMS-7630-061 Schottky diode which is characterized by a low junction capacitance and a low threshold voltage to achieve higher conversion efficiency up to 71.1% at the same 0 dBm input power for the same resonating frequency band. 展开更多
关键词 MONOPOLE MICROSTRIP Antenna RF Energy HARVESTING MULTI-BAND RECTIFIER RECTENNA Matching Circuit Conversion Efficiency
下载PDF
A 9 - 10.6 GHz Microstrip Antenna—UWB Low Noise Amplifier with Differential Noise Canceling Technique for IoT Applications
2
作者 dalia elsheakh Heba Shawkey Sherif Saleh 《International Journal of Communications, Network and System Sciences》 2019年第11期189-197,共9页
An ultra-wide band (UWB) receiver front-end that operates at the UWB frequency range, starting from 9 GHz - 10.6 GHz is proposed in this paper. The proposed system consists of an off-chip microstrip antenna and CMOS d... An ultra-wide band (UWB) receiver front-end that operates at the UWB frequency range, starting from 9 GHz - 10.6 GHz is proposed in this paper. The proposed system consists of an off-chip microstrip antenna and CMOS differential low noise amplifier with a differential noise canceling (DNC) technique. The proposed antenna is trapezoidal dipole shaped with balun and printed on a low-cost FR4 substrate with dimensions 10 × 10 × 0.8 mm3. The balun circuit integrated with the ground antenna to improve the antenna impedance matching. Noise canceling is obtained by using a differential block with each stage having 2 amplifiers that generate differential signals, subtracted to improve total noise performance. The proposed DNC block improves NF by 50% while increasing total power consumption with only 0.1 Mw. The differential CMOS cascode LNA with DNC block is implemented using UMC 0.13 μm CMOS process, exhibits a flat gain of 19 dB, maximum noise figure of 2.75 dB, 1 dB compression point &#8722;16 dBm and 3rd order intercept point (IIP3) &#8722;10 dBm. The proposed system has total DC power consumption of 2.8 mW at 1.2 V power supply. 展开更多
关键词 ULTRA-WIDEBAND (UWB) LOW Noise Amplifier (LNA) DIFFERENTIAL Noise Canceling LOW Power LOW Noise Figure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部