期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Unsupervised Electric Motor Fault Detection by Using Deep Autoencoders 被引量:13
1
作者 Emanuele Principi damiano rossetti +1 位作者 Stefano Squartini Francesco Piazza 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期441-451,共11页
Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent years, several methods have been proposed in the literatu... Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent years, several methods have been proposed in the literature for detecting faults automatically. Deep neural networks have been successfully employed for this task, but, up to the authors' knowledge, they have never been used in an unsupervised scenario. This paper proposes an unsupervised method for diagnosing faults of electric motors by using a novelty detection approach based on deep autoencoders. In the proposed method, vibration signals are acquired by using accelerometers and processed to extract LogMel coefficients as features. Autoencoders are trained by using normal data only, i.e., data that do not contain faults. Three different autoencoders architectures have been evaluated: the multilayer perceptron(MLP) autoencoder, the convolutional neural network autoencoder, and the recurrent autoencoder composed of long short-term memory(LSTM) units. The experiments have been conducted by using a dataset created by the authors, and the proposed approaches have been compared to the one-class support vector machine(OC-SVM) algorithm. The performance has been evaluated in terms area under curve(AUC) of the receiver operating characteristic curve, and the results showed that all the autoencoder-based approaches outperform the OCSVM algorithm. Moreover, the MLP autoencoder is the most performing architecture, achieving an AUC equal to 99.11 %. 展开更多
关键词 Autoencoder convolutional NEURAL NETWORKS electric motor fault DETECTION long SHORT-TERM memory NEURAL NETWORKS NOVELTY DETECTION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部