Detailed measurements of Hamamatsu R5912 photomultiplier signals are presented, including the single photoelectron charge response, waveform shape, nonlinearity, saturation, overshoot, oscillation, prepulsing, and aft...Detailed measurements of Hamamatsu R5912 photomultiplier signals are presented, including the single photoelectron charge response, waveform shape, nonlinearity, saturation, overshoot, oscillation, prepulsing, and afterpulsing. The results were used to build a detailed model of the PMT signal characteristics over a wide range of light intensities. Including the PMT model in simulated Daya Bay particle interactions shows no significant systematic effects that are detrimental to the experimental sensitivity.展开更多
基金Supported by Chinese Academy of Sciences,National Natural Science Foundation of China(Project 10225524,10475086,10535050 and 10575056)Ministry of Science and Technology of China
文摘Detailed measurements of Hamamatsu R5912 photomultiplier signals are presented, including the single photoelectron charge response, waveform shape, nonlinearity, saturation, overshoot, oscillation, prepulsing, and afterpulsing. The results were used to build a detailed model of the PMT signal characteristics over a wide range of light intensities. Including the PMT model in simulated Daya Bay particle interactions shows no significant systematic effects that are detrimental to the experimental sensitivity.