The role of smart cars is pivotal,and this project designs and implements a four-wheel vehicle control system leveraging 5G communication technology.The system aims to enhance the portability of smart cars,reduce thei...The role of smart cars is pivotal,and this project designs and implements a four-wheel vehicle control system leveraging 5G communication technology.The system aims to enhance the portability of smart cars,reduce their costs,enable remote control functionality,and improve mobility to meet the needs of modern Internet of Things(IoT)applications.The system integrates an ESP8266 Wi-Fi module with the Blinker IoT platform to enable remote,real-time control of car movement via a smartphone app.Using Access Point(AP)mode for fast network configuration,users can input Wi-Fi credentials and a Blinker key through a web interface for easy setup.Through the custom app interface,users can send commands to control the car’s forward,backward,turning,and stopping actions,as well as adjust speed and operation delay.Additionally,the system includes Electrically Erasable Programmable Read-Only Memory(EEPROM)data storage to ensure the persistent saving of configuration information,and it features a remote wireless camera for external monitoring of the car’s surroundings.The Android-based remote control design allows users to monitor and control the car’s movement anytime and anywhere.Experimental results show that the system is stable,provides smooth control,operates at low cost and low power consumption,and offers good portability.Therefore,this intelligent car control system offers valuable insights for smart car development and application.It can also be integrated with popular smart homes,IoT,and other emerging technologies,offering broad application potential and promising development prospects.展开更多
为筛选风味优良的发酵剂菌株。该实验在前期研究的基础上,以具有良好风味的德氏乳杆菌保加利亚亚种和嗜热链球菌为实验菌株,进行复配发酵,采用固相微萃取-气相色谱-质谱(solid phase microextraction and gas chromatography-mass spect...为筛选风味优良的发酵剂菌株。该实验在前期研究的基础上,以具有良好风味的德氏乳杆菌保加利亚亚种和嗜热链球菌为实验菌株,进行复配发酵,采用固相微萃取-气相色谱-质谱(solid phase microextraction and gas chromatography-mass spectrometry,SPME-GC-MS)等方法对复配发酵乳香气成分进行检测分析。SPME-GC-MS分析结果表明,对照菌株JD和6组复配发酵乳中共检测出116种挥发性风味物质,其中有酸类化合物(17种)、醛类化合物(11种)、酮类化合物(17种)、醇类化合物(15种)、酯类化合物(11种)、烷烃类(30种)、含氮化合物(15种)。气味活度值(odor activity values,OAV)结果表明发酵乳中关键性风味物质(OAV≥1)有6种,包括3-甲基丁醛、苯甲醛、正壬醛、双乙酰、乙偶姻和2-壬酮。而其他化合物,如辛酸、乙醛、3-羟基丁醛、庚醛、癸醛和2-庚酮等对发酵乳的整体风味起修饰作用(0. 1≤OAV <1)。其中,这些关键性风味物质在样品中浓度较高,赋予发酵乳优良风味。主成分分析及线性判别分析结果表明,A6复配组有良好产香特性,在发酵过程中产生的风味和酸类化合物、酮类化合物、醇类化合物、含氮类化合物、烷烃类化合物等呈正相关。展开更多
China is now confronting the intertwined challenges of air pollution and climate change.Given the high synergies between air pollution abatement and climate change mitigation,the Chinese government is actively promoti...China is now confronting the intertwined challenges of air pollution and climate change.Given the high synergies between air pollution abatement and climate change mitigation,the Chinese government is actively promoting synergetic control of these two issues.The Synergetic Roadmap project was launched in 2021 to track and analyze the progress of synergetic control in China by developing and monitoring key indicators.The Synergetic Roadmap 2022 report is the first annual update,featuring 20 indicators across five aspects:synergetic governance system and practices,progress in structural transition,air pollution and associated weather-climate interactions,sources,sinks,and mitigation pathway of atmospheric composition,and health impacts and benefits of coordinated control.Compared to the comprehensive review presented in the 2021 report,the Synergetic Roadmap 2022 report places particular emphasis on progress in 2021 with highlights on actions in key sectors and the relevant milestones.These milestones include the proportion of non-fossil power generation capacity surpassing coal-fired capacity for the first time,a decline in the production of crude steel and cement after years of growth,and the surging penetration of electric vehicles.Additionally,in 2022,China issued the first national policy that synergizes abatements of pollution and carbon emissions,marking a new era for China's pollution-carbon co-control.These changes highlight China's efforts to reshape its energy,economic,and transportation structures to meet the demand for synergetic control and sustainable development.Consequently,the country has witnessed a slowdown in carbon emission growth,improved air quality,and increased health benefits in recent years.展开更多
CO_(2)emission inventory provides fundamental data for climate research and emission mitigation.Currently,most global CO_(2)emission inventories were developed with energy statistics from International Energy Agency(I...CO_(2)emission inventory provides fundamental data for climate research and emission mitigation.Currently,most global CO_(2)emission inventories were developed with energy statistics from International Energy Agency(IEA)and were available at country level with limited source categories.Here,as the first step toward a high-resolution and dynamic updated global CO_(2)emission database,we developed a data-driven approach to construct seamless and highly-resolved energy consumption data cubes for 208 countries/territories,797 sub-country administrative divisions in 29 countries,42 fuel types,and 52 sectors,with the fusion of activity data from 24 international statistics and 65 regional/local statistics.Global CO_(2)emissions from fossil fuel combustion and cement production in 1970–2021 were then estimated with highly-resolved source category(1,484 of total)and sub-country information(797 of total).Specifically,73%of global CO_(2)emissions in 2021 were estimated with sub-country information,providing considerably improved spatial resolution for global CO_(2)emission accounting.With the support of detailed information,the dynamics of global CO_(2)emissions across sectors and fuel types were presented,representing the evolution of global economy and progress of climate mitigation.Remarkable differences of sectoral contribution were found across sub-country administrative divisions within a given country,revealing the uneven distribution of energy and economic structure among different regions.Our estimates were generally consistent with existing databases at aggregated level for global total or large emitters,while large discrepancies were observed for middle and small emitters.Our database,named the Multiresolution Emission Inventory model for Climate and air pollution research(MEIC)is publicly available through http://meicmodel.org.cn with highly-resolved information and timely update,which provides an independent carbon emission accounting data source for climate research.展开更多
Carbon mitigation technologies lead to air quality improvement and health co-benefits,while the practical effects of the technologies are dependent on the energy composition,technological advancements,and economic dev...Carbon mitigation technologies lead to air quality improvement and health co-benefits,while the practical effects of the technologies are dependent on the energy composition,technological advancements,and economic development.In China,mitigation technologies such as end-of-pipe treatment,renewable energy adoption,carbon capture and storage(CCS),and sector electrification demonstrate significant promise in meeting carbon reduction targets.However,the optimization of these technologies for maximum co-benefits remains unclear.Here,we employ an integrated assessment model(AIM/enduse,CAM-chem,IMED|HEL)to analyze air quality shifts and their corresponding health and economic impacts at the provincial level in China within the two-degree target.Our findings reveal that a combination of end-of-pipe technology,renewable energy utilization,and electrification yields the most promising results in air quality improvement,with a reduction of fine particulate matter(PM2.5)by−34.6μg m^(−3) and ozone by−18.3 ppb in 2050 compared to the reference scenario.In contrast,CCS technology demonstrates comparatively modest improvements in air quality(−9.4μg m^(−3) for PM2.5 and−2.4 ppb for ozone)and cumulative premature deaths reduction(−3.4 million from 2010 to 2050)compared to the end-of-pipe scenario.Notably,densely populated regions such as Henan,Hebei,Shandong,and Sichuan experience the most health and economic benefits.This study aims to project effective future mitigation technologies and climate policies on air quality improvement and carbon mitigation.Furthermore,it seeks to delineate detailed provincial-level air pollution control strategies,offering valuable guidance for policymakers and stakeholders in pursuing sustainable and health-conscious environmental management.展开更多
With rapid economic growth and urbanization, the Yangtze River Delta(YRD) region in China has experienced serious air pollution challenges. In this study, we analyzed the air pollution characteristics and their relati...With rapid economic growth and urbanization, the Yangtze River Delta(YRD) region in China has experienced serious air pollution challenges. In this study, we analyzed the air pollution characteristics and their relationship with emissions and meteorology in the YRD region during 2014–2016. In recent years, the concentrations of all air pollutants, except O3,decreased. Spatially, the PM2.5, PM10, SO2, and CO concentrations were higher in the northern YRD region, and NO2 and O3 were higher in the central YRD region. Based on the number of non-attainment days(i.e., days with air quality index greater than 100), PM2.5 was the largest contributor to air pollution in the YRD region, followed by O3, PM10, and NO2.However, particulate matter pollution has declined gradually, while O3 pollution worsened.Meteorological conditions mainly influenced day-to-day variations in pollutant concentrations. PM2.5 concentration was inversely related to wind speed, while O3 concentration was positively correlated with temperature and negatively correlated with relative humidity.The air quality improvement in recent years was mainly attributed to emission reductions.During 2014–2016, PM2.5, PM10, SO2, NOx, CO, NH3, and volatile organic compound(VOC)emissions in the YRD region were reduced by 26.3%, 29.2%, 32.4%, 8.1%, 15.9%, 4.5%, and0.3%, respectively. Regional transport also contributed to the air pollution. During regional haze periods, pollutants from North China and East China aggravated the pollution in the YRD region. Our findings suggest that emission reduction and regional joint prevention and control helped to improve the air quality in the YRD region.展开更多
Exposure to fine particulate matter(PM2.5)is known to harm public health.In China,after implementation of aggressive emissions control measures under the Action Plan of Air Pollution Prevention and Control(2013-2017),...Exposure to fine particulate matter(PM2.5)is known to harm public health.In China,after implementation of aggressive emissions control measures under the Action Plan of Air Pollution Prevention and Control(2013-2017),air quality has significantly improved.In this work,we investigated changes in PM2.5 exposure and the associated health impacts in China for the period 2013-2017.We used an optimal estimator of PM2.5 combining in-situ observations,satellite measurements,and simulations from a chemical transport model to derive the spatial and temporal variations in PM2.5 exposure,and then used welldeveloped exposure-response functions to estimate the premature deaths attributable to PM2.5 exposure.We found that national population-weighed annual mean PM2.5 concentrations decreased from 67.4μgm-3 in 2013 to 45.5μgm-3 in 2017(32%reduction).This rapid decrease in PM2.5 pollution led to a 14%reduction in premature deaths due to long-term exposure.We estimated that,during 2013-2017,the premature deaths attributable to long-term PM2.5 exposure decreased from 1.2 million(95%CI:1.0,1.3;fraction of total mortality:13%)in 2013 to 1.0 million(95%CI:0.9,1.2;10%)in 2017.Despite the rapid decrease in annual mean PM2.5 concentrations,health benefits associated with reduced long-term exposure were limited,because for many cities,the PM2.5 levels remain at the portion where the exposure-response function is less steeper than that at the lowconcentration end.We also found that the deaths associated with acute exposure decreased by 61%during 2013-2017 due to rapid reduction in the number of heavily polluted days.Our results confirm that clean air policies in China have mitigated the air pollution crisis;however,continuous emissions reduction efforts are required to protect citizens from air pollution.展开更多
China promulgated the Air Pollution Prevention and Control Action Plan(the Action Plan)in 2013 and developed stringent control measures to mitigate fine particulate matter(PM2.5) pollution.Here,we investigated the PM2...China promulgated the Air Pollution Prevention and Control Action Plan(the Action Plan)in 2013 and developed stringent control measures to mitigate fine particulate matter(PM2.5) pollution.Here,we investigated the PM2.5 chemical composition changes over eastern China associated with the Action Plan during 2013-2017 using satellite-based PM2.5 chemical composition data derived using CMAQ simulations and satellite inputs.The PM2.5 concentrations decreased considerably during this time as a result of the reductions in all chemical species in PM2.5.The population-weighted mean concentrations over eastern China decreased from 11.1 to 6.7μgm-3 for SO42-,13.8-13.1μgm-3 for NO3-,7.4-5.8μgm-3 for NH4+,9.9-8.4μgm-3 for OM,4.6-3.8μg m-3 for BC and 12.9-9.6μg m-3 for other species in PM2.5.SO42-had the largest reduction of 40%,while NO3-had the lowest reduction of 5%,resulting in a greater fraction of NO3-and a smaller fraction of SO42-in PM2.5.Among the three key regions,Beijing-Tianjin-Hebei had the largest reduction in PM2.5 and its chemical compositions.The decrease in SO42-concentrations was in line with the reduction of SO2 emissions,and the major driver of the SO2 emission reductions was the industrial sector.The decrease in NO3 concentrations was limited because the decrease in SO2 emissions and the stable NH3 emissions facilitated the formation of NO3-from HNO3,which partially offset the reduction in NOx emissions driven by the power sector.To mitigate PM2.5 pollution more effectively,future efforts are needed to reduce NH3 emissions.展开更多
China is the largest developing economy and carbon dioxide emitter in the world,the carbon neutrality goal of which will have a profound influence on the mitigation pathway of global climate change.The transition towa...China is the largest developing economy and carbon dioxide emitter in the world,the carbon neutrality goal of which will have a profound influence on the mitigation pathway of global climate change.The transition towards a carbon-neutral society is integrated into the construction of ecological civilization in China,and brings profound implications for China’s socioeconomic development.Here,we not only summarize the major challenges in achieving carbon neutrality in China,but also identify the four potential new opportunities:namely,the acceleration of technology innovations,narrowing regional disparity by reshaping the value of resources,transforming the industrial structure,and co-benefits of pollution and carbon mitigation.Finally,we provide five policy suggestions and highlight the importance of balancing economic growth and carbon mitigation,and the joint efforts among the government,the enterprises,and the residents.展开更多
It is well recognized that carbon dioxide and air pollutants share similar emission sources so that synergetic policies on climate change mitigation and air pollution control can lead to remarkable co-benefits on gree...It is well recognized that carbon dioxide and air pollutants share similar emission sources so that synergetic policies on climate change mitigation and air pollution control can lead to remarkable co-benefits on greenhouse gas reduction,air quality improvement,and improved health.In the context of carbon peak,carbon neutrality,and clean air policies,this perspective tracks and analyzes the process of the synergetic governance of air pollution and climate change in China by developing and monitoring 18 indicators.The 18 indicators cover the following five aspects:air pollution and associated weather-climate conditions,progress in structural transition,sources,inks,and mitigation pathway of atmospheric composition,health impacts and benefits of coordinated control,and synergetic governance system and practices.By tracking the progress in each indicator,this perspective presents the major accomplishment of coordinated control,identifies the emerging challenges toward the synergetic governance,and provides policy recommendations for designing a synergetic roadmap of Carbon Neutrality and Clean Air for China.展开更多
Common y chain cytokines are important for immune memory formation.Among them,the role of IL-2 remains to be fully explored.It has been suggested that this cytokine is critically needed in the late phase of primary CD...Common y chain cytokines are important for immune memory formation.Among them,the role of IL-2 remains to be fully explored.It has been suggested that this cytokine is critically needed in the late phase of primary CD4 T cell activation.Lack of IL-2 at this stage sets for a diminished recall response in subsequent challenges.However,as IL-2 peak production is over at this point,the source and the exact mechanism that promotes its production remain elusive.We report here that resting,previously antigen-stimulated CD4 T cells maintain a minimalist response to dendritic cells after their peak activation in vitro.This subtle activation event may be induced by DCs without overt presence of antigen and appears to be stronger if IL-2 comes from the same dendritic cells.This encounter reactivates a miniature IL-2 production and leads a gene expression profile change in these previously activated CD4 T cells.The CD4 T cells so experienced show enhanced reactivation intensity upon secondary challenges later on.Although mostly relying on in vitro evidence,our work may implicate a subtle programing for CD4 T cell survival after primary activation in vivo.展开更多
文摘The role of smart cars is pivotal,and this project designs and implements a four-wheel vehicle control system leveraging 5G communication technology.The system aims to enhance the portability of smart cars,reduce their costs,enable remote control functionality,and improve mobility to meet the needs of modern Internet of Things(IoT)applications.The system integrates an ESP8266 Wi-Fi module with the Blinker IoT platform to enable remote,real-time control of car movement via a smartphone app.Using Access Point(AP)mode for fast network configuration,users can input Wi-Fi credentials and a Blinker key through a web interface for easy setup.Through the custom app interface,users can send commands to control the car’s forward,backward,turning,and stopping actions,as well as adjust speed and operation delay.Additionally,the system includes Electrically Erasable Programmable Read-Only Memory(EEPROM)data storage to ensure the persistent saving of configuration information,and it features a remote wireless camera for external monitoring of the car’s surroundings.The Android-based remote control design allows users to monitor and control the car’s movement anytime and anywhere.Experimental results show that the system is stable,provides smooth control,operates at low cost and low power consumption,and offers good portability.Therefore,this intelligent car control system offers valuable insights for smart car development and application.It can also be integrated with popular smart homes,IoT,and other emerging technologies,offering broad application potential and promising development prospects.
基金supported by the National Natural Science Foundation of China,China(72243008,41921005,and 72140003)the Energy Foundation,China.
文摘China is now confronting the intertwined challenges of air pollution and climate change.Given the high synergies between air pollution abatement and climate change mitigation,the Chinese government is actively promoting synergetic control of these two issues.The Synergetic Roadmap project was launched in 2021 to track and analyze the progress of synergetic control in China by developing and monitoring key indicators.The Synergetic Roadmap 2022 report is the first annual update,featuring 20 indicators across five aspects:synergetic governance system and practices,progress in structural transition,air pollution and associated weather-climate interactions,sources,sinks,and mitigation pathway of atmospheric composition,and health impacts and benefits of coordinated control.Compared to the comprehensive review presented in the 2021 report,the Synergetic Roadmap 2022 report places particular emphasis on progress in 2021 with highlights on actions in key sectors and the relevant milestones.These milestones include the proportion of non-fossil power generation capacity surpassing coal-fired capacity for the first time,a decline in the production of crude steel and cement after years of growth,and the surging penetration of electric vehicles.Additionally,in 2022,China issued the first national policy that synergizes abatements of pollution and carbon emissions,marking a new era for China's pollution-carbon co-control.These changes highlight China's efforts to reshape its energy,economic,and transportation structures to meet the demand for synergetic control and sustainable development.Consequently,the country has witnessed a slowdown in carbon emission growth,improved air quality,and increased health benefits in recent years.
基金supported by the National Natural Science Foundation of China(Grant No.41921005)the Major Project of High Resolution Earth Observation System(Grant No.30Y60B01-9003-22/23)+1 种基金the New Cornerstone Science Foundation through the XPLORER PRIZEthe Tsinghua University Initiative Scientific Research Program(Grant No.20223080041)。
文摘CO_(2)emission inventory provides fundamental data for climate research and emission mitigation.Currently,most global CO_(2)emission inventories were developed with energy statistics from International Energy Agency(IEA)and were available at country level with limited source categories.Here,as the first step toward a high-resolution and dynamic updated global CO_(2)emission database,we developed a data-driven approach to construct seamless and highly-resolved energy consumption data cubes for 208 countries/territories,797 sub-country administrative divisions in 29 countries,42 fuel types,and 52 sectors,with the fusion of activity data from 24 international statistics and 65 regional/local statistics.Global CO_(2)emissions from fossil fuel combustion and cement production in 1970–2021 were then estimated with highly-resolved source category(1,484 of total)and sub-country information(797 of total).Specifically,73%of global CO_(2)emissions in 2021 were estimated with sub-country information,providing considerably improved spatial resolution for global CO_(2)emission accounting.With the support of detailed information,the dynamics of global CO_(2)emissions across sectors and fuel types were presented,representing the evolution of global economy and progress of climate mitigation.Remarkable differences of sectoral contribution were found across sub-country administrative divisions within a given country,revealing the uneven distribution of energy and economic structure among different regions.Our estimates were generally consistent with existing databases at aggregated level for global total or large emitters,while large discrepancies were observed for middle and small emitters.Our database,named the Multiresolution Emission Inventory model for Climate and air pollution research(MEIC)is publicly available through http://meicmodel.org.cn with highly-resolved information and timely update,which provides an independent carbon emission accounting data source for climate research.
基金National Key R&D Program of China(2020YFA0607804)National Natural Science Foundation of China(42375172 and 71903010)。
文摘Carbon mitigation technologies lead to air quality improvement and health co-benefits,while the practical effects of the technologies are dependent on the energy composition,technological advancements,and economic development.In China,mitigation technologies such as end-of-pipe treatment,renewable energy adoption,carbon capture and storage(CCS),and sector electrification demonstrate significant promise in meeting carbon reduction targets.However,the optimization of these technologies for maximum co-benefits remains unclear.Here,we employ an integrated assessment model(AIM/enduse,CAM-chem,IMED|HEL)to analyze air quality shifts and their corresponding health and economic impacts at the provincial level in China within the two-degree target.Our findings reveal that a combination of end-of-pipe technology,renewable energy utilization,and electrification yields the most promising results in air quality improvement,with a reduction of fine particulate matter(PM2.5)by−34.6μg m^(−3) and ozone by−18.3 ppb in 2050 compared to the reference scenario.In contrast,CCS technology demonstrates comparatively modest improvements in air quality(−9.4μg m^(−3) for PM2.5 and−2.4 ppb for ozone)and cumulative premature deaths reduction(−3.4 million from 2010 to 2050)compared to the end-of-pipe scenario.Notably,densely populated regions such as Henan,Hebei,Shandong,and Sichuan experience the most health and economic benefits.This study aims to project effective future mitigation technologies and climate policies on air quality improvement and carbon mitigation.Furthermore,it seeks to delineate detailed provincial-level air pollution control strategies,offering valuable guidance for policymakers and stakeholders in pursuing sustainable and health-conscious environmental management.
基金supported by the National Science and Technology Program of China(Nos.2017YFC0211601,2016YFC0202700)the National Natural Science Foundation of China(No.81571130090)the National Research Program for Key Issues in Air Pollution Control(No.DQGG0103)
文摘With rapid economic growth and urbanization, the Yangtze River Delta(YRD) region in China has experienced serious air pollution challenges. In this study, we analyzed the air pollution characteristics and their relationship with emissions and meteorology in the YRD region during 2014–2016. In recent years, the concentrations of all air pollutants, except O3,decreased. Spatially, the PM2.5, PM10, SO2, and CO concentrations were higher in the northern YRD region, and NO2 and O3 were higher in the central YRD region. Based on the number of non-attainment days(i.e., days with air quality index greater than 100), PM2.5 was the largest contributor to air pollution in the YRD region, followed by O3, PM10, and NO2.However, particulate matter pollution has declined gradually, while O3 pollution worsened.Meteorological conditions mainly influenced day-to-day variations in pollutant concentrations. PM2.5 concentration was inversely related to wind speed, while O3 concentration was positively correlated with temperature and negatively correlated with relative humidity.The air quality improvement in recent years was mainly attributed to emission reductions.During 2014–2016, PM2.5, PM10, SO2, NOx, CO, NH3, and volatile organic compound(VOC)emissions in the YRD region were reduced by 26.3%, 29.2%, 32.4%, 8.1%, 15.9%, 4.5%, and0.3%, respectively. Regional transport also contributed to the air pollution. During regional haze periods, pollutants from North China and East China aggravated the pollution in the YRD region. Our findings suggest that emission reduction and regional joint prevention and control helped to improve the air quality in the YRD region.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41571130032, 41571130035, 41625020 & 41701591)the National Key R & D Program (Grant No. 2016YFC0201506)
文摘Exposure to fine particulate matter(PM2.5)is known to harm public health.In China,after implementation of aggressive emissions control measures under the Action Plan of Air Pollution Prevention and Control(2013-2017),air quality has significantly improved.In this work,we investigated changes in PM2.5 exposure and the associated health impacts in China for the period 2013-2017.We used an optimal estimator of PM2.5 combining in-situ observations,satellite measurements,and simulations from a chemical transport model to derive the spatial and temporal variations in PM2.5 exposure,and then used welldeveloped exposure-response functions to estimate the premature deaths attributable to PM2.5 exposure.We found that national population-weighed annual mean PM2.5 concentrations decreased from 67.4μgm-3 in 2013 to 45.5μgm-3 in 2017(32%reduction).This rapid decrease in PM2.5 pollution led to a 14%reduction in premature deaths due to long-term exposure.We estimated that,during 2013-2017,the premature deaths attributable to long-term PM2.5 exposure decreased from 1.2 million(95%CI:1.0,1.3;fraction of total mortality:13%)in 2013 to 1.0 million(95%CI:0.9,1.2;10%)in 2017.Despite the rapid decrease in annual mean PM2.5 concentrations,health benefits associated with reduced long-term exposure were limited,because for many cities,the PM2.5 levels remain at the portion where the exposure-response function is less steeper than that at the lowconcentration end.We also found that the deaths associated with acute exposure decreased by 61%during 2013-2017 due to rapid reduction in the number of heavily polluted days.Our results confirm that clean air policies in China have mitigated the air pollution crisis;however,continuous emissions reduction efforts are required to protect citizens from air pollution.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41571130032 & 41571130035)the National Key R & D Program (Grant No. 2016YFC0201506)supported by the MAIA science team at the JPL, California Institute of Technology (Grant No. 1588347)
文摘China promulgated the Air Pollution Prevention and Control Action Plan(the Action Plan)in 2013 and developed stringent control measures to mitigate fine particulate matter(PM2.5) pollution.Here,we investigated the PM2.5 chemical composition changes over eastern China associated with the Action Plan during 2013-2017 using satellite-based PM2.5 chemical composition data derived using CMAQ simulations and satellite inputs.The PM2.5 concentrations decreased considerably during this time as a result of the reductions in all chemical species in PM2.5.The population-weighted mean concentrations over eastern China decreased from 11.1 to 6.7μgm-3 for SO42-,13.8-13.1μgm-3 for NO3-,7.4-5.8μgm-3 for NH4+,9.9-8.4μgm-3 for OM,4.6-3.8μg m-3 for BC and 12.9-9.6μg m-3 for other species in PM2.5.SO42-had the largest reduction of 40%,while NO3-had the lowest reduction of 5%,resulting in a greater fraction of NO3-and a smaller fraction of SO42-in PM2.5.Among the three key regions,Beijing-Tianjin-Hebei had the largest reduction in PM2.5 and its chemical compositions.The decrease in SO42-concentrations was in line with the reduction of SO2 emissions,and the major driver of the SO2 emission reductions was the industrial sector.The decrease in NO3 concentrations was limited because the decrease in SO2 emissions and the stable NH3 emissions facilitated the formation of NO3-from HNO3,which partially offset the reduction in NOx emissions driven by the power sector.To mitigate PM2.5 pollution more effectively,future efforts are needed to reduce NH3 emissions.
基金supported by the National Natural Science Foundation of China(Nos.72140003 and 72025401)by Tsinghua University Initiative Scientific Research Program.
文摘China is the largest developing economy and carbon dioxide emitter in the world,the carbon neutrality goal of which will have a profound influence on the mitigation pathway of global climate change.The transition towards a carbon-neutral society is integrated into the construction of ecological civilization in China,and brings profound implications for China’s socioeconomic development.Here,we not only summarize the major challenges in achieving carbon neutrality in China,but also identify the four potential new opportunities:namely,the acceleration of technology innovations,narrowing regional disparity by reshaping the value of resources,transforming the industrial structure,and co-benefits of pollution and carbon mitigation.Finally,we provide five policy suggestions and highlight the importance of balancing economic growth and carbon mitigation,and the joint efforts among the government,the enterprises,and the residents.
基金This work was supported by the National Natural Science Foundation of China(41921005,42130708,and 72140003)and the Energy Foundation.
文摘It is well recognized that carbon dioxide and air pollutants share similar emission sources so that synergetic policies on climate change mitigation and air pollution control can lead to remarkable co-benefits on greenhouse gas reduction,air quality improvement,and improved health.In the context of carbon peak,carbon neutrality,and clean air policies,this perspective tracks and analyzes the process of the synergetic governance of air pollution and climate change in China by developing and monitoring 18 indicators.The 18 indicators cover the following five aspects:air pollution and associated weather-climate conditions,progress in structural transition,sources,inks,and mitigation pathway of atmospheric composition,health impacts and benefits of coordinated control,and synergetic governance system and practices.By tracking the progress in each indicator,this perspective presents the major accomplishment of coordinated control,identifies the emerging challenges toward the synergetic governance,and provides policy recommendations for designing a synergetic roadmap of Carbon Neutrality and Clean Air for China.
基金We thank Drs.Li Wu,Hai Qi,and Chen Dong for providing mice and reagents and Dr.Fei Shu for help in Listeria monocytogens infection and adoptive transfer experiments.Y.S.is supported by the joint Peking-Tsinghua Center for Life Sciences and the National Natural Science Foundation of China grants 81621002,31630023,31370878 and 20171312479.X.H.is supported by Ministry of Science and Technology of China National Key Research Projects 2015CB943201,National Natural Science Foundation of China grants 31821003,31725010,81661130161,91642115 and 81571580.
文摘Common y chain cytokines are important for immune memory formation.Among them,the role of IL-2 remains to be fully explored.It has been suggested that this cytokine is critically needed in the late phase of primary CD4 T cell activation.Lack of IL-2 at this stage sets for a diminished recall response in subsequent challenges.However,as IL-2 peak production is over at this point,the source and the exact mechanism that promotes its production remain elusive.We report here that resting,previously antigen-stimulated CD4 T cells maintain a minimalist response to dendritic cells after their peak activation in vitro.This subtle activation event may be induced by DCs without overt presence of antigen and appears to be stronger if IL-2 comes from the same dendritic cells.This encounter reactivates a miniature IL-2 production and leads a gene expression profile change in these previously activated CD4 T cells.The CD4 T cells so experienced show enhanced reactivation intensity upon secondary challenges later on.Although mostly relying on in vitro evidence,our work may implicate a subtle programing for CD4 T cell survival after primary activation in vivo.