Magnetic properties and the magnetocaloric effect(MCE)of the RSi(R=Ce,Pr,Nd)compounds made of Misch metal(MM)are investigated.Two transitions are found at 12K and 38K.Field variation generated large MCE and two peaks ...Magnetic properties and the magnetocaloric effect(MCE)of the RSi(R=Ce,Pr,Nd)compounds made of Misch metal(MM)are investigated.Two transitions are found at 12K and 38K.Field variation generated large MCE and two peaks are found in the magnetic entropy change(△S)curves,which correspond to the two transition temperatures.The maximum values of the magnetic entropy changes(△S)are found to be-5.1 J/(kg·K)and-9.3 J/(kg·K)for the field ranges of 0-2 T and 0-5 T,respectively.The large AS as well as ultra-low price of MM make(MM)Si a competitive magnetic refrigerant candidate for low temperature in Eriksson cycle.展开更多
Mn_(0.3)Zn_(0.3)Co_xFe_(2.4-x)O_4 series magnetic nanoparticles are prepared by the high-temperature organic solvent method, and Mn_(0.3)Zn_(0.3)Co_xFe_(2.4-x)O_4@SiO_2 composite nanoparticles are prepared by the reve...Mn_(0.3)Zn_(0.3)Co_xFe_(2.4-x)O_4 series magnetic nanoparticles are prepared by the high-temperature organic solvent method, and Mn_(0.3)Zn_(0.3)Co_xFe_(2.4-x)O_4@SiO_2 composite nanoparticles are prepared by the reverse microemulsion method. The as-prepared samples are characterized, and the results show that the magnetic anisotropy constant of nanoparticles increases with the cobalt content, and the magnetic thermal induction shows a trend of increasing first and then decreasing. The optimal magnetic thermal induction is obtained at x = 0.12 with a specific loss power of 2086 w/gmetal, which is a bright prospect in clinical magnetic hyperthermia.展开更多
基金the National Natural Science Foundation of China under Grant Nos.51701130,51571146,and 51771124.
文摘Magnetic properties and the magnetocaloric effect(MCE)of the RSi(R=Ce,Pr,Nd)compounds made of Misch metal(MM)are investigated.Two transitions are found at 12K and 38K.Field variation generated large MCE and two peaks are found in the magnetic entropy change(△S)curves,which correspond to the two transition temperatures.The maximum values of the magnetic entropy changes(△S)are found to be-5.1 J/(kg·K)and-9.3 J/(kg·K)for the field ranges of 0-2 T and 0-5 T,respectively.The large AS as well as ultra-low price of MM make(MM)Si a competitive magnetic refrigerant candidate for low temperature in Eriksson cycle.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51571146,51771124 and 51701130
文摘Mn_(0.3)Zn_(0.3)Co_xFe_(2.4-x)O_4 series magnetic nanoparticles are prepared by the high-temperature organic solvent method, and Mn_(0.3)Zn_(0.3)Co_xFe_(2.4-x)O_4@SiO_2 composite nanoparticles are prepared by the reverse microemulsion method. The as-prepared samples are characterized, and the results show that the magnetic anisotropy constant of nanoparticles increases with the cobalt content, and the magnetic thermal induction shows a trend of increasing first and then decreasing. The optimal magnetic thermal induction is obtained at x = 0.12 with a specific loss power of 2086 w/gmetal, which is a bright prospect in clinical magnetic hyperthermia.