Kidney Renal Clear Cell Carcinoma(KIRC)is a malignant tumor that carries a substantial risk of morbidity and mortality.The MMP family assumes a crucial role in tumor invasion and metastasis.This study aimed to uncover...Kidney Renal Clear Cell Carcinoma(KIRC)is a malignant tumor that carries a substantial risk of morbidity and mortality.The MMP family assumes a crucial role in tumor invasion and metastasis.This study aimed to uncover the mechanistic relevance of the MMP gene family as a therapeutic target and diagnostic biomarker in Kidney Renal Clear Cell Carcinoma(KIRC)through a comprehensive approach encompassing both computational and molecular analyses.STRING,Cytoscape,UALCAN,GEPIA,OncoDB,HPA,cBioPortal,GSEA,TIMER,ENCORI,DrugBank,targeted bisulfite sequencing(bisulfite-seq),conventional PCR,Sanger sequencing,and RT-qPCR based analyses were used in the present study to analyze MMP gene family members to accurately determine a few hub genes that can be utilized as both therapeutic targets and diagnostic biomarkers for KIRC.By performing STRING and Cytohubba analyses of the 24 MMP gene family members,MMP2(matrix metallopeptidase 2),MMP9(matrix metallopeptidase 9),MMP12(matrix metallopeptidase 12),and MMP16(matrix metallopeptidase 16)genes were denoted as hub genes having highest degree scores.After analyzing MMP2,MMP9,MMP12,and MMP16 via various TCGA databases and RT-qPCR technique across clinical samples and KIRC cell lines,interestingly,all these hub genes were found significantly overexpressed at mRNA and protein levels in KIRC samples relative to controls.The notable effect of the up-regulated MMP2,MMP9,MMP12,and MMP16 was also documented on the overall survival(OS)of the KIRC patients.Moreover,targeted bisulfite-sequencing(bisulfite-seq)analysis revealed that promoter hypomethylation pattern was associated with up-regulation of hub genes(MMP2,MMP9,MMP12,and MMP16).In addition to this,hub genes were involved in various diverse oncogenic pathways.The MMP gene family members(MMP2,MMP9,MMP12,and MMP16)may serve as therapeutic targets and prognostic biomarkers in KIRC.展开更多
2,4-dinitroanisole(DNAN)is a good replacement for 2,4,6-trinitrotoluene(TNT)in melt-cast explosives due to its superior insensitivity.With the increasing use of DNAN-based melt-cast explosives,the prediction of reacti...2,4-dinitroanisole(DNAN)is a good replacement for 2,4,6-trinitrotoluene(TNT)in melt-cast explosives due to its superior insensitivity.With the increasing use of DNAN-based melt-cast explosives,the prediction of reaction violence and hazard assessment of the explosives subjected to shock is of great significance.This study investigated the shock initiation characteristics for a DNAN-based melt-cast explosive,DHFA,using the one-dimensional Lagrangian apparatus.The embedded manganin gauges in the apparatus record the pressure histories at four Lagrangian positions and show that shock-todetonation transition in DHFA needs a high input shock pressure.The experimental data are analyzed to calibrate the Ignition and Growth model.The calibration is performed using an objective function based on both pressure history and the arrival time of shock.Good agreement between experimental and calculated pressure histories indicates the high accuracy of the calibrated parameters with the optimization method.展开更多
Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a sin...Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a single-satellite localization algorithm based on passive synthetic aper-ture(PSA)was introduced,enabling high-precision positioning.However,its estimation of azimuth and range distance is considerably affected by the residual frequency offset(RFO)of uncoopera-tive system transceivers.Furthermore,it requires data containing a satellite flying over the radia-tion source for RFO search.After estimating the RFO,an accurate estimation of azimuth and range distance can be carried out,which is difficult to achieve in practical situations.An LFM radar source passive localization algorithm based on range migration is proposed to address the dif-ficulty in estimating frequency offset.The algorithm first provides a rough estimate of the pulse repetition time(PRT).It processes intercepted signals through range compression,range interpola-tion,and polynomial fitting to obtain range migration observations.Subsequently,it uses the changing information of range migration and an accurate PRT to formulate a system of nonlinear equations,obtaining the emitter position and a more accurate PRT through a two-step localization algorithm.Frequency offset only induces a fixed offset in range migration,which does not affect the changing information.This algorithm can also achieve high-precision localization in squint scenar-ios.Finally,the effectiveness of this algorithm is verified through simulations.展开更多
Gibberellin(GA)functions in plant growth and development.However,genes involved in the biosynthesis and regulation of GA in crop plants are poorly understood.We isolated the mutant gad5-1(GAAssociated Dwarf 5),charact...Gibberellin(GA)functions in plant growth and development.However,genes involved in the biosynthesis and regulation of GA in crop plants are poorly understood.We isolated the mutant gad5-1(GAAssociated Dwarf 5),characterized by dwarfing,short internodes,and dark green and short leaves.Map-based gene cloning and allelic verification confirmed that ZmGAD5 encodes ent-kaurenoic acid oxidase(KAO),which catalyzes KA(ent-kaurenoic acid)to GA12 conversion during GA biosynthesis in maize.ZmGAD5 is localized to the endoplasmic reticulum and is present in multiple maize organs.In gad5-1,the expression of ZmGAD5 is severely reduced,and the levels of the direct substrate of KAO,KA,is increased,leading to a reduction in GA content.The abnormal phenotype of gad5-1 was restored by exogenous application of GA3.The biomass,plant height,and levels of GA12 and GA3 in transgenic Arabidopsis overexpressing ZmGAD5 were increased in comparison with the corresponding controls Col-0.These findings deepen our understanding of genes involved in GA biosynthesis,and could lead to the development of maize lines with improved architecture and higher planting-density tolerance.展开更多
Boosting of rechargeable lithium metal batteries(LMBs) holds challenges because of lithium dendrites germination and high-reactive surface feature.Separators may experience structure-determined chemical deterioration ...Boosting of rechargeable lithium metal batteries(LMBs) holds challenges because of lithium dendrites germination and high-reactive surface feature.Separators may experience structure-determined chemical deterioration and worsen Li plating-stripping behaviors when smoothly shifting from lithium-ion batteries(LIBs) to LMBs.This study precisely regulations the crystal structure of β-polypropylene and separator porous construction to investigate the intrinsic porous structure and mechanical properties determined electrochemical performances and cycling durability of LMBs.Crystal structure characterizations,porous structure analyses,and electrochemical cycling tests uncover appropriate annealing thermal stimulation concentrates β-lamellae thickness and enhances lamellae thermal stability by rearranging molecular chain in inferior β-lamellae,maximally homogenizing biaxial tensile deformation and resultant porous constructions.These even pores with high connectivity lower ion migration barriers,alleviate heterogeneous Li^(+) flux dispersion,stabilize reversible Li plating-stripping behaviors,and hinder coursing and branching of Li dendrites,endowing steady cell cycling durability,especially at higher currents due to the highlighted uncontrollable cumulation of dead Li,which offers new insights for the current pursuit of high-power density battery and fast charging technology.The suggested separator structure-chemical nature functions in ensuring cyclic cell stability and builds reliable relationships between separator structure design and practical LMBs applications.展开更多
The genus Brassica contains a rich diversity of species and morphological types,including leaf,root,and oil crops,all of which show substantial phenotypic variation.Both Chinese cabbage and cabbage are typical leaf-ty...The genus Brassica contains a rich diversity of species and morphological types,including leaf,root,and oil crops,all of which show substantial phenotypic variation.Both Chinese cabbage and cabbage are typical leaf-type crops with normal roots.We created translocation lines based on interspecific crosses between Chinese cabbage and cabbage and identified qdh225,which exhibited a swollen-root phenotype.The swollen root of qdh225 contained a large number of granular substances,and the formation of its irregular morphological tissue was caused by a thickening of the phloem.Transcriptomic and metabolomic data suggested that differential expression of genes encoding nine types of enzymes involved in starch and sucrose metabolism caused changes in starch synthesis and degradation in the swollen root.These genes jointly regulated sucrose and starch levels,leading to significant enrichment of starch and soluble proteins in the swollen root and a reduction in the content of soluble sugars such as d-glucose and trehalose 6-phosphate.A significant increase in auxin(IAA)and abscisic acid(ABA)contents and a decrease in gibberellin(GA)content in the swollen root likely promoted the differential expression of genes associated with hormone signal transduction,thereby regulating the development of the swollen root.Taken together,our data suggest that accumulation of IAA and ABA and reduction in GA promote swollen root formation by regulating hormone-mediated signaling,leading to a thickening of phloem,root enlargement,and substantial accumulation of starch and soluble proteins.The latter provide materials,energy,and nutrient sources for the development of swollen roots.展开更多
Germination,a powerful biofortification technique,holds immense potential in bolstering the micronutrient profile of essential staple grains,thereby paving the way for optimal nutritional enhancement.The primary goal ...Germination,a powerful biofortification technique,holds immense potential in bolstering the micronutrient profile of essential staple grains,thereby paving the way for optimal nutritional enhancement.The primary goal of this study was to improve the technological functionality of germinated wheat flour by incorporating pentosanase(Pn)and glucose oxidase(Gox)enzymes,with particular emphasis on the evolutionary changes in its components.The inclusion of Gox did not produce any substantial impact on the volumetric characteristics of the steamed bread.The incorporation of Pn and Gox has been seen to enhance the overall excellence of steamed bread by optimizing loaf volume and textural characteristics while also improving the thermal stability of the dough.The existence of two endothermic peaks could be attributed to bound water or alterations in the granules within the starch crystallization region.Adding Pn and Gox reduced and increased the formation and stability time of the dough,respectively.A certain ratio was employed to assess alternations in the crystallinity of starch granules over a limited range.After steaming,a significant decrease in IR1047/1022 was observed,indicating that the elevated temperature partially disrupted the internal starch crystal structure,leading to a gelatinization reaction with water.The ratio of tensile resistance(R)and elongation(E)of dough increased significantly compared to the control.The results obtained from this study indicate that the simultaneous inclusion of enzymes(Pn+Gox)holds significant promise for expanding the technological functionality of germinated wheat flour dough and improving the quality attributes of steamed bread.展开更多
In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechani...In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.展开更多
The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly effi...The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.展开更多
Wheat bran, a principal byproduct of flour milling, stands as an abundant source of dietary fiber, yet its economic potential remains under-exploited in current forage applications. Arabinoxylan(AX), constituting the ...Wheat bran, a principal byproduct of flour milling, stands as an abundant source of dietary fiber, yet its economic potential remains under-exploited in current forage applications. Arabinoxylan(AX), constituting the core of dietary fiber, emerges as a versatile compound with multifaceted functionalities. Its nutritional significance,coupled with its role in cereal food processing, has prompted a surge of studies focusing on the valorization of wheat bran AX. Moreover, the hydrolyzed derivative, arabinoxylan oligosaccharides(AXOS), demonstrates prebiotic and antioxidant properties, offering potential avenues to mitigate the risk of chronic diseases. This review summarizes current knowledge on the valorization of wheat bran AX in terms of the processing and nutritional properties of AX. Moreover, multiple novel applications of AX in the materials area, including biodegradable food packaging films, delivery of bioactive substances as nanoparticles, and the manufacture of food emulsifiers, are also highlighted to extend the utilization of AX. This review underscores the immense potential of wheat bran AX, advocating for its exploitation not only as a nutritional asset but also as a primary ingredient in advanced materials. The synthesis of nutritional and materials perspectives accentuates the multifaceted utility of wheat bran AX, thereby paving the way for sustainable valorization pathways. By unraveling the latent potential within AX, this paper advocates for the holistic and sustainable utilization of wheat bran in diverse, value-added applications.展开更多
Fresh-cut roses(Rosa hybrida)are one of the most important ornamental crops worldwide,with annual trade in the billions of dollars.Gray mold disease caused by the pathogen Botrytis cinerea is the most serious fungal t...Fresh-cut roses(Rosa hybrida)are one of the most important ornamental crops worldwide,with annual trade in the billions of dollars.Gray mold disease caused by the pathogen Botrytis cinerea is the most serious fungal threat to cut roses,causing extensive postharvest losses.In this study,we optimized a detached petal disc assay(DPDA)for artificial B.cinerea inoculation and quantification of disease symptoms in rose petals.Furthermore,as the identification of rose genes involved in B.cinerea resistance could provide useful genetic and genomic resources,we devised a virusinduced gene silencing(VIGS)procedure for the functional analysis of B.cinerea resistance genes in rose petals.We used RhPR10.1 as a reporter of silencing efficiency and found that the rose cultivar‘Samantha’showed the greatest decrease in RhPR10.1 expression among the cultivars tested.To determine whether jasmonic acid and ethylene are required for B.cinerea resistance in rose petals,we used VIGS to silence the expression of RhLOX5 and RhEIN3(encoding a jasmonic acid biosynthesis pathway protein and an ethylene regulatory protein,respectively)and found that petal susceptibility to B.cinerea was affected.Finally,a VIGS screen of B.cinerea-induced rose transcription factors demonstrated the potential benefits of this method for the high-throughput identification of gene function in B.cinerea resistance.Collectively,our data show that the combination of the DPDA and VIGS is a reliable and highthroughput method for studying B.cinerea resistance in rose.展开更多
Proanthocyanidins(PAs)are the most broadly distributed secondary metabolites that play important roles in various aspects of plant development and response to biotic and abiotic stresses.In this study,we cloned a R2R3...Proanthocyanidins(PAs)are the most broadly distributed secondary metabolites that play important roles in various aspects of plant development and response to biotic and abiotic stresses.In this study,we cloned a R2R3 MYB gene LoMYB29,which has a full-length coding sequence of 921 bp identified in Larix olgensis.Quantitative real-time reverse transcription polymerase chain reaction analysis indicates that LoMYB29 is expressed under mechanical wounding,high light intensity,and NaCl,PEG6000,Methyl Jasmonate,and abscisic acid treatments.Subcellular localization analysis and yeast twohybrid assay localized LoMYB29 to the nucleus,acting as a transcriptional activator.Staining with 4-dimethylaminocinnamaldehyde showed a darker blue-purple color in LoMYB29-overexpressing Arabidopsis seeds compared to that of wild seeds.LoMYB29-overexpression resulted in a significant increase in leaf PA content.The expression of early flavonoid biosynthesis-related gene CHI and late flavonoid biosynthesis-related genes,including DFR,LDOX,and ANR(PA branch gene),were also activated in transgenic plants overexpressing LoMYB29.The results indicate that LoMYB29 plays a positive role in the regulation of PA biosynthesis by activating the expression of PA biosynthetic genes.展开更多
The influence of low-vacuum helium cold plasma treatment on the rooting percentage,root growth and physiochemical properties of zoysiagrass stolon cuttings was studied.Zoysiagrass stolon cuttings were pre-treated with...The influence of low-vacuum helium cold plasma treatment on the rooting percentage,root growth and physiochemical properties of zoysiagrass stolon cuttings was studied.Zoysiagrass stolon cuttings were pre-treated with 0,100,200,300 and 400 W of cold plasma for 15 s.The cold plasma positively stimulated rooting and improved the root growth of the zoysiagrass stolon cuttings,and the 300 W treatment produced the best effect.The rooting percentage and root growth parameters,including the root length,total root surface area,total root volume,average root diameter,and root dry weight,significantly improved in response to the cold plasma treatment.In addition,the water uptake and relative conductivity of the stolon cuttings increased significantly in response to the cold plasma treatment.The results revealed that cold plasma-stimulated rooting and root growth appear to be a consequence of the improvement in permeability and water absorbing capacity of zoysiagrass stolon cuttings.The results of the present study will provide inspiration and support for the application of cold plasma in the vegetative propagation of plants.展开更多
A rapid and sensitive liquid chromatography-tandem mass chromatography (LC-MS/MS) method has been developed and validated for simultaneous determination of catalpol and harpagide in rat plasma. The samples were extrac...A rapid and sensitive liquid chromatography-tandem mass chromatography (LC-MS/MS) method has been developed and validated for simultaneous determination of catalpol and harpagide in rat plasma. The samples were extracted by one-step protein precipitation and separated on a SunFireTM C18 column (100 mm × 2.1 mm, 3.5 μm;Waters) using acetonitrile-10 mM ammonium formate as mobile phase at a flow rate 0.3 mL/min in gradient mode. The analytes were detected without interference in Multiple Reaction Monitoring (MRM) mode with negative electrospray ionization. Linear responses were obtained for catalpol ranging from 20 to 5000 ng/mL and harpagide ranging from 10 to 2500 ng/mL. Coefficients of correlation (r) for the calibration curves were more than 0.99 for both analytes. Intra- and inter-day accuracy and precision were within the acceptable limits of less than 15.0% at all concentrations. The quantitation method was successfully applied for simultaneous estimation of catalpol and harpagide after oral administration of Zeng Ye Decoction.展开更多
A two-month trial was carried out in China to evaluate the possibility of recycling animal manure through pond tilapia production.And the effects of chicken manure,cattle manure and chicken-cattle mixture together on ...A two-month trial was carried out in China to evaluate the possibility of recycling animal manure through pond tilapia production.And the effects of chicken manure,cattle manure and chicken-cattle mixture together on the water quality and tilapia production were investigated.The results showed that the yield of tilapia was 3.46,3.89,2.49 and 3.20 kg in the control,chicken M,cattle M,and chicken-cattle M,respectively,and the tilapia yields following the order of chicken M>control>chicken-cattle M>cattle M.The tilapia yield in chicken M group increased by 12.43% compared with the control.Chicken manure could increase the tilapia production,but cattle manure has no the effect.And the effect of animal manure on water quality showed that adding chicken manure into tilapia pond could make water quality decreased at the beginning 20 d,but could increase water quality after 20 d and stabilize the phytoplankton structure.展开更多
A two-month trial was carried out to evaluate the possibility of using algae and animal manure in tilapia culture.And the effect of algae,chicken manure and algae mixture together,cattle manure and algae mixture toget...A two-month trial was carried out to evaluate the possibility of using algae and animal manure in tilapia culture.And the effect of algae,chicken manure and algae mixture together,cattle manure and algae mixture together,chicken-cattle manure and algae mixture together on the water quality and tilapia production was researched.The results showed that the yield of tilapia were 3.46,4.33,3.81,2.92 and 3.76 kg in Control,Algae,Chicken-A,Cattle-A and C-C-A,respectively,following the order of Algae>Chicken-A>C-C-A>Control>Cattle-A,and tilapia yield in Algae and chicken manure treatment groups increased by 25.0%and 10.1%respectively compared with the control.Algae and chicken manure could increase the tilapia production,but cattle manure has no the effect.And the effect of algae and animal manure on water quality showed that adding chicken manure into tilapia pond could make water quality decreased at the beginning 20 d,but could increase water quality after 20 d and it can stabilize the phytoplankton structure in aquaculture water.Adding Chlorella vulgaris and Scenedesmus quadricauda into tilapia pond could make water quality in a good state during the aquaculture process and it can stabilize the phytoplankton structure in aquaculture water.展开更多
Coordinated development of new high-tech industries and traditional industries is crucially important for economic growth and environmental sustainability,and it has become a focus of academic and governmental bodies...Coordinated development of new high-tech industries and traditional industries is crucially important for economic growth and environmental sustainability,and it has become a focus of academic and governmental bodies.This study establishes the comprehensive evaluation index system of high-tech industries and traditional industries,and uses the method of principal component analysis,coupling and coupling coordination degree model to determine the level of industry coordinated development.Then,Pearson correlation test is used to further analyze the correlation between regional industrial coupling coordination and carbon intensity of the seven provinces in the Bohai Rim Economic Circle(BREC).The results are as follows.(1)There is a negative correlation between industrial coupling coordination and carbon intensity.(2)The degree of industrial coordination of Beijing,Tianjin,and Shandong is significantly higher than other provinces in the BREC,as both the high-tech industries and traditional industries of these three provinces have reached a high level of development and achieved high coupling.The high-tech industries of the three provinces show positive changes,whereas the traditional industries show negative changes,which indicates that the new high-tech industries are driving the upgrading of the traditional industries by the application of high technologies.(3)From 2011 to 2016,the number of provinces with a low degree of high-tech and traditional industrial coordination fell from three to one.The traditional industries in Hebei and Inner Mongolia have been upgraded by strengthening their technological innovation with the introduction of rapid high-tech industrial development.These findings are a useful reference for regional industrial coupling coordination and carbon emission reduction.展开更多
Due to the complexity and overlap effects of gravity anomalies,the gravity high point always deviates from the real position of the target.Researching the offset characteristics is helpful to determine the right locat...Due to the complexity and overlap effects of gravity anomalies,the gravity high point always deviates from the real position of the target.Researching the offset characteristics is helpful to determine the right location of gravity anomalies.In this paper,a series of forward models were designed to calculate the offset features under different assumptions.Different density models were established based on the measured gravity data in north China Sunhu area and a variety of methods were tried to eliminate offset effects under different conditions.The results indicate that the gravity anomalies of different density bodies can be separated effectively and the real position of target can be correctly located by using the“layer stripping method”.展开更多
Autism Spectrum Disorder(ASD)is a common neurodevelopmental disorder in children,characterized by social interaction,communication difficulties,and repetitive and stereotyped behaviors.Existing intervention methods ha...Autism Spectrum Disorder(ASD)is a common neurodevelopmental disorder in children,characterized by social interaction,communication difficulties,and repetitive and stereotyped behaviors.Existing intervention methods have limitations,such as requiring long treatment periods and needing to be more convenient to implement.Extended Reality(XR)technology offers a virtual environment to enhance children's social,communication,and self-regulation skills.This paper compares XR theoretical models,application examples,and intervention effects.The study reveals that XR intervention therapy is mainly based on cognitive rehabilitation,teaching,and social-emotional learning theories.It utilizes algorithms,models,artificial intelligence(AI),eye-tracking,and other technologies for interaction,achieving diverse intervention outcomes.Participants showed effective improvement in competency barriers using XR-based multimodal interactive platforms.However,Mixed Reality(MR)technology still requires further development.Future research should explore multimsodal interaction technologies combining XR and AI,optimize models,prioritize the development of MR intervention scenarios,and sustain an optimal intervention level.展开更多
基金The authors would like to extend their sincere appreciation to the Researchers Supporting Project Number(RSP2023R457),King Saud University,Riyadh,Saudi Arabia.
文摘Kidney Renal Clear Cell Carcinoma(KIRC)is a malignant tumor that carries a substantial risk of morbidity and mortality.The MMP family assumes a crucial role in tumor invasion and metastasis.This study aimed to uncover the mechanistic relevance of the MMP gene family as a therapeutic target and diagnostic biomarker in Kidney Renal Clear Cell Carcinoma(KIRC)through a comprehensive approach encompassing both computational and molecular analyses.STRING,Cytoscape,UALCAN,GEPIA,OncoDB,HPA,cBioPortal,GSEA,TIMER,ENCORI,DrugBank,targeted bisulfite sequencing(bisulfite-seq),conventional PCR,Sanger sequencing,and RT-qPCR based analyses were used in the present study to analyze MMP gene family members to accurately determine a few hub genes that can be utilized as both therapeutic targets and diagnostic biomarkers for KIRC.By performing STRING and Cytohubba analyses of the 24 MMP gene family members,MMP2(matrix metallopeptidase 2),MMP9(matrix metallopeptidase 9),MMP12(matrix metallopeptidase 12),and MMP16(matrix metallopeptidase 16)genes were denoted as hub genes having highest degree scores.After analyzing MMP2,MMP9,MMP12,and MMP16 via various TCGA databases and RT-qPCR technique across clinical samples and KIRC cell lines,interestingly,all these hub genes were found significantly overexpressed at mRNA and protein levels in KIRC samples relative to controls.The notable effect of the up-regulated MMP2,MMP9,MMP12,and MMP16 was also documented on the overall survival(OS)of the KIRC patients.Moreover,targeted bisulfite-sequencing(bisulfite-seq)analysis revealed that promoter hypomethylation pattern was associated with up-regulation of hub genes(MMP2,MMP9,MMP12,and MMP16).In addition to this,hub genes were involved in various diverse oncogenic pathways.The MMP gene family members(MMP2,MMP9,MMP12,and MMP16)may serve as therapeutic targets and prognostic biomarkers in KIRC.
基金Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(Grant No.2021yjrc38)Anhui Provincial Natural Science Foundation(Grant No.2208085QA27)+1 种基金National Natural Science Foundation of China(Grant Nos.11972046,12002266)the authors would like to thank these foundations for financial support.
文摘2,4-dinitroanisole(DNAN)is a good replacement for 2,4,6-trinitrotoluene(TNT)in melt-cast explosives due to its superior insensitivity.With the increasing use of DNAN-based melt-cast explosives,the prediction of reaction violence and hazard assessment of the explosives subjected to shock is of great significance.This study investigated the shock initiation characteristics for a DNAN-based melt-cast explosive,DHFA,using the one-dimensional Lagrangian apparatus.The embedded manganin gauges in the apparatus record the pressure histories at four Lagrangian positions and show that shock-todetonation transition in DHFA needs a high input shock pressure.The experimental data are analyzed to calibrate the Ignition and Growth model.The calibration is performed using an objective function based on both pressure history and the arrival time of shock.Good agreement between experimental and calculated pressure histories indicates the high accuracy of the calibrated parameters with the optimization method.
基金supported by the National Natural Science Foun-dation of China(No.62027801)。
文摘Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a single-satellite localization algorithm based on passive synthetic aper-ture(PSA)was introduced,enabling high-precision positioning.However,its estimation of azimuth and range distance is considerably affected by the residual frequency offset(RFO)of uncoopera-tive system transceivers.Furthermore,it requires data containing a satellite flying over the radia-tion source for RFO search.After estimating the RFO,an accurate estimation of azimuth and range distance can be carried out,which is difficult to achieve in practical situations.An LFM radar source passive localization algorithm based on range migration is proposed to address the dif-ficulty in estimating frequency offset.The algorithm first provides a rough estimate of the pulse repetition time(PRT).It processes intercepted signals through range compression,range interpola-tion,and polynomial fitting to obtain range migration observations.Subsequently,it uses the changing information of range migration and an accurate PRT to formulate a system of nonlinear equations,obtaining the emitter position and a more accurate PRT through a two-step localization algorithm.Frequency offset only induces a fixed offset in range migration,which does not affect the changing information.This algorithm can also achieve high-precision localization in squint scenar-ios.Finally,the effectiveness of this algorithm is verified through simulations.
基金the National Natural Science Foundation of China(U21A20206,Chun-Peng Song)the Project of Sanya Yazhou Bay Science and Technology City(SCKJJYRC-2022-78,Baozhu Li)+1 种基金the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(21IRTSTHN019,Siyi Guo)the 111 Project of China(D16014).
文摘Gibberellin(GA)functions in plant growth and development.However,genes involved in the biosynthesis and regulation of GA in crop plants are poorly understood.We isolated the mutant gad5-1(GAAssociated Dwarf 5),characterized by dwarfing,short internodes,and dark green and short leaves.Map-based gene cloning and allelic verification confirmed that ZmGAD5 encodes ent-kaurenoic acid oxidase(KAO),which catalyzes KA(ent-kaurenoic acid)to GA12 conversion during GA biosynthesis in maize.ZmGAD5 is localized to the endoplasmic reticulum and is present in multiple maize organs.In gad5-1,the expression of ZmGAD5 is severely reduced,and the levels of the direct substrate of KAO,KA,is increased,leading to a reduction in GA content.The abnormal phenotype of gad5-1 was restored by exogenous application of GA3.The biomass,plant height,and levels of GA12 and GA3 in transgenic Arabidopsis overexpressing ZmGAD5 were increased in comparison with the corresponding controls Col-0.These findings deepen our understanding of genes involved in GA biosynthesis,and could lead to the development of maize lines with improved architecture and higher planting-density tolerance.
基金the Natural Science Foundation of Shandong Province (ZR2022QB050)the Liaocheng University Doctoral Initial Fund (318052137) for Financial Support。
文摘Boosting of rechargeable lithium metal batteries(LMBs) holds challenges because of lithium dendrites germination and high-reactive surface feature.Separators may experience structure-determined chemical deterioration and worsen Li plating-stripping behaviors when smoothly shifting from lithium-ion batteries(LIBs) to LMBs.This study precisely regulations the crystal structure of β-polypropylene and separator porous construction to investigate the intrinsic porous structure and mechanical properties determined electrochemical performances and cycling durability of LMBs.Crystal structure characterizations,porous structure analyses,and electrochemical cycling tests uncover appropriate annealing thermal stimulation concentrates β-lamellae thickness and enhances lamellae thermal stability by rearranging molecular chain in inferior β-lamellae,maximally homogenizing biaxial tensile deformation and resultant porous constructions.These even pores with high connectivity lower ion migration barriers,alleviate heterogeneous Li^(+) flux dispersion,stabilize reversible Li plating-stripping behaviors,and hinder coursing and branching of Li dendrites,endowing steady cell cycling durability,especially at higher currents due to the highlighted uncontrollable cumulation of dead Li,which offers new insights for the current pursuit of high-power density battery and fast charging technology.The suggested separator structure-chemical nature functions in ensuring cyclic cell stability and builds reliable relationships between separator structure design and practical LMBs applications.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.31930098 and 32172560)the Hebei Provincial Natural Science Fund for Distinguished Young Scholars(Grant No.C2020204063)the Innovative Research Group Project of Hebei Natural Science Foundation(Grant No.C2020204111).
文摘The genus Brassica contains a rich diversity of species and morphological types,including leaf,root,and oil crops,all of which show substantial phenotypic variation.Both Chinese cabbage and cabbage are typical leaf-type crops with normal roots.We created translocation lines based on interspecific crosses between Chinese cabbage and cabbage and identified qdh225,which exhibited a swollen-root phenotype.The swollen root of qdh225 contained a large number of granular substances,and the formation of its irregular morphological tissue was caused by a thickening of the phloem.Transcriptomic and metabolomic data suggested that differential expression of genes encoding nine types of enzymes involved in starch and sucrose metabolism caused changes in starch synthesis and degradation in the swollen root.These genes jointly regulated sucrose and starch levels,leading to significant enrichment of starch and soluble proteins in the swollen root and a reduction in the content of soluble sugars such as d-glucose and trehalose 6-phosphate.A significant increase in auxin(IAA)and abscisic acid(ABA)contents and a decrease in gibberellin(GA)content in the swollen root likely promoted the differential expression of genes associated with hormone signal transduction,thereby regulating the development of the swollen root.Taken together,our data suggest that accumulation of IAA and ABA and reduction in GA promote swollen root formation by regulating hormone-mediated signaling,leading to a thickening of phloem,root enlargement,and substantial accumulation of starch and soluble proteins.The latter provide materials,energy,and nutrient sources for the development of swollen roots.
基金supported by the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)National Key Research and Development Plan Project(2022YFD2301401)+4 种基金Outstanding Youth Science Fund Project of Natural Science Foundation of Jiangsu Province(BK20211576)the Central Government Guides Local Funds(ZYYD2023A13)Key Technology Research and Development Program of Hainan Province(ZDYF2022XDNY233)the China Postdoctoral Science Foundation(2018 M630564)a project funded by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.
文摘Germination,a powerful biofortification technique,holds immense potential in bolstering the micronutrient profile of essential staple grains,thereby paving the way for optimal nutritional enhancement.The primary goal of this study was to improve the technological functionality of germinated wheat flour by incorporating pentosanase(Pn)and glucose oxidase(Gox)enzymes,with particular emphasis on the evolutionary changes in its components.The inclusion of Gox did not produce any substantial impact on the volumetric characteristics of the steamed bread.The incorporation of Pn and Gox has been seen to enhance the overall excellence of steamed bread by optimizing loaf volume and textural characteristics while also improving the thermal stability of the dough.The existence of two endothermic peaks could be attributed to bound water or alterations in the granules within the starch crystallization region.Adding Pn and Gox reduced and increased the formation and stability time of the dough,respectively.A certain ratio was employed to assess alternations in the crystallinity of starch granules over a limited range.After steaming,a significant decrease in IR1047/1022 was observed,indicating that the elevated temperature partially disrupted the internal starch crystal structure,leading to a gelatinization reaction with water.The ratio of tensile resistance(R)and elongation(E)of dough increased significantly compared to the control.The results obtained from this study indicate that the simultaneous inclusion of enzymes(Pn+Gox)holds significant promise for expanding the technological functionality of germinated wheat flour dough and improving the quality attributes of steamed bread.
基金supported by the National Natural Science Foundation of China(Nos.51974082,51901037)State Key Laboratory of Baiyunobo Rare Earth Resource Research and Comprehensive Utilization(No.2021H2279)Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project 2.0 of China,No.BP0719037).
文摘In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.
基金supported by the National Natural Science Foundation of China(22171001,22305001,51972001,52372073)the Natural Science Foundation of Anhui Province of China(2108085MB49).
文摘The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.
基金supported by the National Key Research and Development Plan Project (2022YFD2301401)Young Elite Scientists Sponsorship Program by the CAST (2022QNRC001)+4 种基金the Outstanding Youth Science Fund Project of Natural Science Foundation of Jiangsu Province (BK20211576)the Central Government Guides Local Funds (ZYYD2023A13)Key Technology Research and Development Program of Jiangsu Province (BE2023370)Hainan Province (ZDYF2022XDNY233)a project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions。
文摘Wheat bran, a principal byproduct of flour milling, stands as an abundant source of dietary fiber, yet its economic potential remains under-exploited in current forage applications. Arabinoxylan(AX), constituting the core of dietary fiber, emerges as a versatile compound with multifaceted functionalities. Its nutritional significance,coupled with its role in cereal food processing, has prompted a surge of studies focusing on the valorization of wheat bran AX. Moreover, the hydrolyzed derivative, arabinoxylan oligosaccharides(AXOS), demonstrates prebiotic and antioxidant properties, offering potential avenues to mitigate the risk of chronic diseases. This review summarizes current knowledge on the valorization of wheat bran AX in terms of the processing and nutritional properties of AX. Moreover, multiple novel applications of AX in the materials area, including biodegradable food packaging films, delivery of bioactive substances as nanoparticles, and the manufacture of food emulsifiers, are also highlighted to extend the utilization of AX. This review underscores the immense potential of wheat bran AX, advocating for its exploitation not only as a nutritional asset but also as a primary ingredient in advanced materials. The synthesis of nutritional and materials perspectives accentuates the multifaceted utility of wheat bran AX, thereby paving the way for sustainable valorization pathways. By unraveling the latent potential within AX, this paper advocates for the holistic and sustainable utilization of wheat bran in diverse, value-added applications.
基金Z.Z.is supported by the National Natural Science Foundation of China(31772344 and 31501791)funded in part by a grant from the Natural Science Foundation of Beijing Municipality(6162017)to Z.Z.
文摘Fresh-cut roses(Rosa hybrida)are one of the most important ornamental crops worldwide,with annual trade in the billions of dollars.Gray mold disease caused by the pathogen Botrytis cinerea is the most serious fungal threat to cut roses,causing extensive postharvest losses.In this study,we optimized a detached petal disc assay(DPDA)for artificial B.cinerea inoculation and quantification of disease symptoms in rose petals.Furthermore,as the identification of rose genes involved in B.cinerea resistance could provide useful genetic and genomic resources,we devised a virusinduced gene silencing(VIGS)procedure for the functional analysis of B.cinerea resistance genes in rose petals.We used RhPR10.1 as a reporter of silencing efficiency and found that the rose cultivar‘Samantha’showed the greatest decrease in RhPR10.1 expression among the cultivars tested.To determine whether jasmonic acid and ethylene are required for B.cinerea resistance in rose petals,we used VIGS to silence the expression of RhLOX5 and RhEIN3(encoding a jasmonic acid biosynthesis pathway protein and an ethylene regulatory protein,respectively)and found that petal susceptibility to B.cinerea was affected.Finally,a VIGS screen of B.cinerea-induced rose transcription factors demonstrated the potential benefits of this method for the high-throughput identification of gene function in B.cinerea resistance.Collectively,our data show that the combination of the DPDA and VIGS is a reliable and highthroughput method for studying B.cinerea resistance in rose.
基金supported by the Genetically Modified Organisms Breeding Major Projects of China(2018ZX08022001)111 Project(B16010)National High Technology Research and Development Program of China(863 Program,2013AA102704)
文摘Proanthocyanidins(PAs)are the most broadly distributed secondary metabolites that play important roles in various aspects of plant development and response to biotic and abiotic stresses.In this study,we cloned a R2R3 MYB gene LoMYB29,which has a full-length coding sequence of 921 bp identified in Larix olgensis.Quantitative real-time reverse transcription polymerase chain reaction analysis indicates that LoMYB29 is expressed under mechanical wounding,high light intensity,and NaCl,PEG6000,Methyl Jasmonate,and abscisic acid treatments.Subcellular localization analysis and yeast twohybrid assay localized LoMYB29 to the nucleus,acting as a transcriptional activator.Staining with 4-dimethylaminocinnamaldehyde showed a darker blue-purple color in LoMYB29-overexpressing Arabidopsis seeds compared to that of wild seeds.LoMYB29-overexpression resulted in a significant increase in leaf PA content.The expression of early flavonoid biosynthesis-related gene CHI and late flavonoid biosynthesis-related genes,including DFR,LDOX,and ANR(PA branch gene),were also activated in transgenic plants overexpressing LoMYB29.The results indicate that LoMYB29 plays a positive role in the regulation of PA biosynthesis by activating the expression of PA biosynthetic genes.
基金supported by the Jiangsu Provincial Public Institutions Program for Research Conditions and Building Capacity(No.BM2015019)the Foundation of Jiangsu Key Laboratory for the Research and Utilization of Plant Resources(Institute of Botany,Jiangsu Province and Chinese Academy of Sciences,No.JSPKLB201606)National Natural Science Foundation of China(No.31572155)
文摘The influence of low-vacuum helium cold plasma treatment on the rooting percentage,root growth and physiochemical properties of zoysiagrass stolon cuttings was studied.Zoysiagrass stolon cuttings were pre-treated with 0,100,200,300 and 400 W of cold plasma for 15 s.The cold plasma positively stimulated rooting and improved the root growth of the zoysiagrass stolon cuttings,and the 300 W treatment produced the best effect.The rooting percentage and root growth parameters,including the root length,total root surface area,total root volume,average root diameter,and root dry weight,significantly improved in response to the cold plasma treatment.In addition,the water uptake and relative conductivity of the stolon cuttings increased significantly in response to the cold plasma treatment.The results revealed that cold plasma-stimulated rooting and root growth appear to be a consequence of the improvement in permeability and water absorbing capacity of zoysiagrass stolon cuttings.The results of the present study will provide inspiration and support for the application of cold plasma in the vegetative propagation of plants.
文摘A rapid and sensitive liquid chromatography-tandem mass chromatography (LC-MS/MS) method has been developed and validated for simultaneous determination of catalpol and harpagide in rat plasma. The samples were extracted by one-step protein precipitation and separated on a SunFireTM C18 column (100 mm × 2.1 mm, 3.5 μm;Waters) using acetonitrile-10 mM ammonium formate as mobile phase at a flow rate 0.3 mL/min in gradient mode. The analytes were detected without interference in Multiple Reaction Monitoring (MRM) mode with negative electrospray ionization. Linear responses were obtained for catalpol ranging from 20 to 5000 ng/mL and harpagide ranging from 10 to 2500 ng/mL. Coefficients of correlation (r) for the calibration curves were more than 0.99 for both analytes. Intra- and inter-day accuracy and precision were within the acceptable limits of less than 15.0% at all concentrations. The quantitation method was successfully applied for simultaneous estimation of catalpol and harpagide after oral administration of Zeng Ye Decoction.
基金Support by the Projects of the National Science and Technology Pillar Program(2015BAD13B03)Earmarked Fund for China Agriculture Research System(CARS-49)
文摘A two-month trial was carried out in China to evaluate the possibility of recycling animal manure through pond tilapia production.And the effects of chicken manure,cattle manure and chicken-cattle mixture together on the water quality and tilapia production were investigated.The results showed that the yield of tilapia was 3.46,3.89,2.49 and 3.20 kg in the control,chicken M,cattle M,and chicken-cattle M,respectively,and the tilapia yields following the order of chicken M>control>chicken-cattle M>cattle M.The tilapia yield in chicken M group increased by 12.43% compared with the control.Chicken manure could increase the tilapia production,but cattle manure has no the effect.And the effect of animal manure on water quality showed that adding chicken manure into tilapia pond could make water quality decreased at the beginning 20 d,but could increase water quality after 20 d and stabilize the phytoplankton structure.
基金Supported by the National Science and Technology Pillar Program(2015BAD13B03)China Agriculture Research System(No.CARS-49)
文摘A two-month trial was carried out to evaluate the possibility of using algae and animal manure in tilapia culture.And the effect of algae,chicken manure and algae mixture together,cattle manure and algae mixture together,chicken-cattle manure and algae mixture together on the water quality and tilapia production was researched.The results showed that the yield of tilapia were 3.46,4.33,3.81,2.92 and 3.76 kg in Control,Algae,Chicken-A,Cattle-A and C-C-A,respectively,following the order of Algae>Chicken-A>C-C-A>Control>Cattle-A,and tilapia yield in Algae and chicken manure treatment groups increased by 25.0%and 10.1%respectively compared with the control.Algae and chicken manure could increase the tilapia production,but cattle manure has no the effect.And the effect of algae and animal manure on water quality showed that adding chicken manure into tilapia pond could make water quality decreased at the beginning 20 d,but could increase water quality after 20 d and it can stabilize the phytoplankton structure in aquaculture water.Adding Chlorella vulgaris and Scenedesmus quadricauda into tilapia pond could make water quality in a good state during the aquaculture process and it can stabilize the phytoplankton structure in aquaculture water.
基金This study was funded by the Key Laboratory of Carrying Capacity Assessment for Resource and Environment,Ministry of Natural Resources[CCA2019.16]Program for New Century Excellent Talents in University[NCET-11-0731]the Fundamental Research Funds for the Central Universities(2009QG08).
文摘Coordinated development of new high-tech industries and traditional industries is crucially important for economic growth and environmental sustainability,and it has become a focus of academic and governmental bodies.This study establishes the comprehensive evaluation index system of high-tech industries and traditional industries,and uses the method of principal component analysis,coupling and coupling coordination degree model to determine the level of industry coordinated development.Then,Pearson correlation test is used to further analyze the correlation between regional industrial coupling coordination and carbon intensity of the seven provinces in the Bohai Rim Economic Circle(BREC).The results are as follows.(1)There is a negative correlation between industrial coupling coordination and carbon intensity.(2)The degree of industrial coordination of Beijing,Tianjin,and Shandong is significantly higher than other provinces in the BREC,as both the high-tech industries and traditional industries of these three provinces have reached a high level of development and achieved high coupling.The high-tech industries of the three provinces show positive changes,whereas the traditional industries show negative changes,which indicates that the new high-tech industries are driving the upgrading of the traditional industries by the application of high technologies.(3)From 2011 to 2016,the number of provinces with a low degree of high-tech and traditional industrial coordination fell from three to one.The traditional industries in Hebei and Inner Mongolia have been upgraded by strengthening their technological innovation with the introduction of rapid high-tech industrial development.These findings are a useful reference for regional industrial coupling coordination and carbon emission reduction.
基金National Natural Science Foundation of China(41674107,41874119,41574064)National Key Research and Development Program of China(2017YFB0202904).
文摘Due to the complexity and overlap effects of gravity anomalies,the gravity high point always deviates from the real position of the target.Researching the offset characteristics is helpful to determine the right location of gravity anomalies.In this paper,a series of forward models were designed to calculate the offset features under different assumptions.Different density models were established based on the measured gravity data in north China Sunhu area and a variety of methods were tried to eliminate offset effects under different conditions.The results indicate that the gravity anomalies of different density bodies can be separated effectively and the real position of target can be correctly located by using the“layer stripping method”.
基金supported by grants from the National Natural Science Foundation of China(82301735)The University Synergy Innovation Program of Anhui Province(GXXT-2021-003)The Basic and Clinical Collaborative Research Enhancement Programme of Anhui Medical University(2022xkjT016).
文摘Autism Spectrum Disorder(ASD)is a common neurodevelopmental disorder in children,characterized by social interaction,communication difficulties,and repetitive and stereotyped behaviors.Existing intervention methods have limitations,such as requiring long treatment periods and needing to be more convenient to implement.Extended Reality(XR)technology offers a virtual environment to enhance children's social,communication,and self-regulation skills.This paper compares XR theoretical models,application examples,and intervention effects.The study reveals that XR intervention therapy is mainly based on cognitive rehabilitation,teaching,and social-emotional learning theories.It utilizes algorithms,models,artificial intelligence(AI),eye-tracking,and other technologies for interaction,achieving diverse intervention outcomes.Participants showed effective improvement in competency barriers using XR-based multimodal interactive platforms.However,Mixed Reality(MR)technology still requires further development.Future research should explore multimsodal interaction technologies combining XR and AI,optimize models,prioritize the development of MR intervention scenarios,and sustain an optimal intervention level.