During human immunodeficiency virus(HIV) infection, type I interferon(IFN-I) signaling induces an antiviral state that includes the production of restriction factors that inhibit virus replication, thereby limiting th...During human immunodeficiency virus(HIV) infection, type I interferon(IFN-I) signaling induces an antiviral state that includes the production of restriction factors that inhibit virus replication, thereby limiting the infection. As seen in other viral infections, type I IFN can also increase systemic immune activation which, in HIV disease, is one of the strongest predictors of disease progression to acquired immune deficiency syndrome(AIDS) and non-AIDS morbidity and mortality.Moreover, IFN-I is associated with CD4 T cell depletion and attenuation of antigen-specific T cell responses. Therefore,therapeutic manipulation of IFN-I signaling to improve HIV disease outcome is a source of much interest and debate in thefield. Recent studies have highlighted the importance of timing(acute vs. chronic infection) and have suggested that specific targeting of type I IFNs and their subtypes may help harness the beneficial roles of the IFN-I system while avoiding its deleterious activities.展开更多
文摘During human immunodeficiency virus(HIV) infection, type I interferon(IFN-I) signaling induces an antiviral state that includes the production of restriction factors that inhibit virus replication, thereby limiting the infection. As seen in other viral infections, type I IFN can also increase systemic immune activation which, in HIV disease, is one of the strongest predictors of disease progression to acquired immune deficiency syndrome(AIDS) and non-AIDS morbidity and mortality.Moreover, IFN-I is associated with CD4 T cell depletion and attenuation of antigen-specific T cell responses. Therefore,therapeutic manipulation of IFN-I signaling to improve HIV disease outcome is a source of much interest and debate in thefield. Recent studies have highlighted the importance of timing(acute vs. chronic infection) and have suggested that specific targeting of type I IFNs and their subtypes may help harness the beneficial roles of the IFN-I system while avoiding its deleterious activities.