Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels in the heart modulate cardiac automaticity via the hyperpolarization-activated cation current ( named Ⅰf, Ⅰh, or Ⅰq). Recent studies have unveiled ...Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels in the heart modulate cardiac automaticity via the hyperpolarization-activated cation current ( named Ⅰf, Ⅰh, or Ⅰq). Recent studies have unveiled the molecular identity of HCN (HCN1-4) channels. HCN isoforms are unevenly expressed in the heart, even in the sinoatrial node. Features of HCN currents have been characterized in cardiac and other types of cells or in cell lines transfected with the HCN isoforms. The factors modulating Ih and the physiological significance of HCN channels in the heart have been extensively investigated in recent years. The hypothesis for transplanting and/or creating biological pacemakers to replace diseased sinoatrial and/or atrioventricular nodes has been postulated and tested in animal models. Local overexpression of HCN2 channels in the left atrium or in the left conductive bundle branch of the left ventricle via gene delivery induced significant Ⅰh and escape rhythms during vagal stimulation in canines. In addition, implantation of human mesenchymal stem cells with overexpression of HCN2 channels to the canine left ventricular wall was associated with formation of spontaneous escape rhythms of left-sided origin during vagal-stimulation-induced sinus arrest. This preliminary data suggest that the use of HCN channels may hold great promise in,the development of biological pacemakers.展开更多
Abstract Hyperpolarization-activated cyclic-nucleotide-gated ( HCN) channels in the heart modulate cardiac automaticity via the hyperpolarization-activated cation current (named If, Ih, or Iq). Recent studies have unv...Abstract Hyperpolarization-activated cyclic-nucleotide-gated ( HCN) channels in the heart modulate cardiac automaticity via the hyperpolarization-activated cation current (named If, Ih, or Iq). Recent studies have unveiled the molecular identity of HCN (HCN 1-4) channels. HCN isoforms are unevenly expressed in the heart, even in the sinoatrial node. Features of HCN currents have been characterized in cardiac and other types of cells or in cell lines transfected with the HCN isoforms. The factors modulating Ih and the physiological significance of HCN channels in the heart have been extensively investigated in recent years. The hypothesis for transplanting and/or creating biological pacemakers to replace diseased sinoatrial and/or atrioventricular nodes has been postulated and tested in animal models. Local overexpression of HCN2 channels in the left atrium or in the left conductive bundle branch of the left ventricle via gene delivery induced significant Ih and escape rhythms during vagal stimulation in canines. In addition, implantation of human mesenchymal stem cells with overexpression of HCN2 channels to the canine left ventricular wall was associated with formation of spontaneous escape rhythms of left-sided origin during vagal-stimulation-induced sinus arrest. This preliminary data suggest that the use of HCN channels may hold great promise in the development of biological pacemakers.展开更多
文摘Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels in the heart modulate cardiac automaticity via the hyperpolarization-activated cation current ( named Ⅰf, Ⅰh, or Ⅰq). Recent studies have unveiled the molecular identity of HCN (HCN1-4) channels. HCN isoforms are unevenly expressed in the heart, even in the sinoatrial node. Features of HCN currents have been characterized in cardiac and other types of cells or in cell lines transfected with the HCN isoforms. The factors modulating Ih and the physiological significance of HCN channels in the heart have been extensively investigated in recent years. The hypothesis for transplanting and/or creating biological pacemakers to replace diseased sinoatrial and/or atrioventricular nodes has been postulated and tested in animal models. Local overexpression of HCN2 channels in the left atrium or in the left conductive bundle branch of the left ventricle via gene delivery induced significant Ⅰh and escape rhythms during vagal stimulation in canines. In addition, implantation of human mesenchymal stem cells with overexpression of HCN2 channels to the canine left ventricular wall was associated with formation of spontaneous escape rhythms of left-sided origin during vagal-stimulation-induced sinus arrest. This preliminary data suggest that the use of HCN channels may hold great promise in,the development of biological pacemakers.
文摘Abstract Hyperpolarization-activated cyclic-nucleotide-gated ( HCN) channels in the heart modulate cardiac automaticity via the hyperpolarization-activated cation current (named If, Ih, or Iq). Recent studies have unveiled the molecular identity of HCN (HCN 1-4) channels. HCN isoforms are unevenly expressed in the heart, even in the sinoatrial node. Features of HCN currents have been characterized in cardiac and other types of cells or in cell lines transfected with the HCN isoforms. The factors modulating Ih and the physiological significance of HCN channels in the heart have been extensively investigated in recent years. The hypothesis for transplanting and/or creating biological pacemakers to replace diseased sinoatrial and/or atrioventricular nodes has been postulated and tested in animal models. Local overexpression of HCN2 channels in the left atrium or in the left conductive bundle branch of the left ventricle via gene delivery induced significant Ih and escape rhythms during vagal stimulation in canines. In addition, implantation of human mesenchymal stem cells with overexpression of HCN2 channels to the canine left ventricular wall was associated with formation of spontaneous escape rhythms of left-sided origin during vagal-stimulation-induced sinus arrest. This preliminary data suggest that the use of HCN channels may hold great promise in the development of biological pacemakers.