Soil remediation is of increasing importance globally, especially in developing countries. Among available remediation options, stabilization, which aims to immobilize contaminants within soil, has considerable advant...Soil remediation is of increasing importance globally, especially in developing countries. Among available remediation options, stabilization, which aims to immobilize contaminants within soil, has considerable advantages, including that it is cost-effective, versatile, sustainable, rapid, and often results in less secondary pollution. However, there are emerging challenges regard- ing the long-term performance of the technology, which may be affected by a range of environmental factors. These challenges stem from a research gap regarding the development of accurate, quantitative laboratory simula- tions of long-term conditions, whereby laboratory accel- erated aging methods could be normalized to real field conditions. Therefore, field trials coupled with long-term monitoring are critical to further verify conditions under which stabilization is effective. Sustainability is also an important factor affecting the long-term stability of site remediation. It is hence important to consider these challenges to develop an optimized application of stabilization technology in soil remediation.展开更多
基金The first author would like to thank the Killam Trusts of Canada for kindly providing the Izaak Walton Killam Memorial Postdoctoral Fellowship. The corresponding author would like to thank the Natural Science Foundation of Jiangsu Province of China (No. BK20150683).
文摘Soil remediation is of increasing importance globally, especially in developing countries. Among available remediation options, stabilization, which aims to immobilize contaminants within soil, has considerable advantages, including that it is cost-effective, versatile, sustainable, rapid, and often results in less secondary pollution. However, there are emerging challenges regard- ing the long-term performance of the technology, which may be affected by a range of environmental factors. These challenges stem from a research gap regarding the development of accurate, quantitative laboratory simula- tions of long-term conditions, whereby laboratory accel- erated aging methods could be normalized to real field conditions. Therefore, field trials coupled with long-term monitoring are critical to further verify conditions under which stabilization is effective. Sustainability is also an important factor affecting the long-term stability of site remediation. It is hence important to consider these challenges to develop an optimized application of stabilization technology in soil remediation.