In this work,the impact of the doping process on the photoluminescence emission of CaWO_(4) as a function of the concentration of Eu^(3+) cation(0.01 mol%,0.02 mol%,0.04 mol%,0.06 mol%,0.08 mol%,and 0.10 mol%) is disc...In this work,the impact of the doping process on the photoluminescence emission of CaWO_(4) as a function of the concentration of Eu^(3+) cation(0.01 mol%,0.02 mol%,0.04 mol%,0.06 mol%,0.08 mol%,and 0.10 mol%) is discussed in detail.Ca_(1-x)WO~4:xEu^(3+) samples were successfully synthesized by a simple coprecipitation method followed by microwave irradiation.The blue shift in the absorption edge confirms the quantum confinement effect and the band gap energy covers the range from 3.91 to 4.18 eV,as the amount of Eu^(3+) cations increases.The experimental results are sustained by first-principles calculations,at the density functional theory level,to decipher the geometry and electronic properties,thereby enabling a more accurate and direct comparison between theory and experiment for the Ca_(1-x)WO_(4):xEu^(3+) structure.展开更多
基金Project supported in part by Fundacao de AmparoàPesquisa do Estado de Sao Paulo-FAPESP(2013/07296-2,2016/23891-6,2017/26105-4,2019/01732-1)Financiadora de Estudos e Projetos-FINEP,Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPQ(166281/2017-4,305792/2020-2)CAPES。
文摘In this work,the impact of the doping process on the photoluminescence emission of CaWO_(4) as a function of the concentration of Eu^(3+) cation(0.01 mol%,0.02 mol%,0.04 mol%,0.06 mol%,0.08 mol%,and 0.10 mol%) is discussed in detail.Ca_(1-x)WO~4:xEu^(3+) samples were successfully synthesized by a simple coprecipitation method followed by microwave irradiation.The blue shift in the absorption edge confirms the quantum confinement effect and the band gap energy covers the range from 3.91 to 4.18 eV,as the amount of Eu^(3+) cations increases.The experimental results are sustained by first-principles calculations,at the density functional theory level,to decipher the geometry and electronic properties,thereby enabling a more accurate and direct comparison between theory and experiment for the Ca_(1-x)WO_(4):xEu^(3+) structure.