A novel bone-inspired fatigue-resistant hydrogel with excellent mechanical and piezoresistive properties was developed,and it exhibited great potential as a load and strain sensor for underwater robotics and daily mon...A novel bone-inspired fatigue-resistant hydrogel with excellent mechanical and piezoresistive properties was developed,and it exhibited great potential as a load and strain sensor for underwater robotics and daily monitoring.The hydrogel was created by using the high edge density and aspect ratio of graphene nanosheet-embedded carbon(GNEC)nanomaterials to form a three-dimensional conductive network and prevent the expansion of microcracks in the hydrogel system.Multiscale progressive enhancement of the organic hydrogels(micrometer scale)was realized with inorganic graphene nanosheets(nanometer scale).The graphene nanocrystals inside the GNEC film exhibited good electron transport properties,and the increased distances between the graphene nanocrystals inside the GNEC film caused by external forces increased the resistance,so the hydrogel was highly sensitive and suitable for connection to a loop for sensing applications.The hydrogels obtained in this work exhibited excellent mechanical properties,such as tensile properties(strain up to 1685%)and strengths(stresses up to 171 kPa),that make them suitable for use as elastic retraction devices in robotics and provide high sensitivities(150 ms)for daily human monitoring.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.52275565 and No.62104155),NSF of Guangdong province(No.2022A1515011667),Shenzhen Foundation Research Key Project(No.JCYJ20200109114244249),Youth Talent Fund of Guangdong province(No.2023A1515030292),and Shenzhen Science and Technology Program(No.JSGG20220606140202005).The authors wish to acknowledge the assistance with(TEM/FIB)received from the Electron Microscope Center of Shenzhen University.
文摘A novel bone-inspired fatigue-resistant hydrogel with excellent mechanical and piezoresistive properties was developed,and it exhibited great potential as a load and strain sensor for underwater robotics and daily monitoring.The hydrogel was created by using the high edge density and aspect ratio of graphene nanosheet-embedded carbon(GNEC)nanomaterials to form a three-dimensional conductive network and prevent the expansion of microcracks in the hydrogel system.Multiscale progressive enhancement of the organic hydrogels(micrometer scale)was realized with inorganic graphene nanosheets(nanometer scale).The graphene nanocrystals inside the GNEC film exhibited good electron transport properties,and the increased distances between the graphene nanocrystals inside the GNEC film caused by external forces increased the resistance,so the hydrogel was highly sensitive and suitable for connection to a loop for sensing applications.The hydrogels obtained in this work exhibited excellent mechanical properties,such as tensile properties(strain up to 1685%)and strengths(stresses up to 171 kPa),that make them suitable for use as elastic retraction devices in robotics and provide high sensitivities(150 ms)for daily human monitoring.