We present an Er-doped fiber(Er:fiber)-based femtosecond laser at 780 nm with 256 MHz repetition rate, 191 fs pulse duration, and over 1 W average power.Apart from the careful third-order dispersion management, we int...We present an Er-doped fiber(Er:fiber)-based femtosecond laser at 780 nm with 256 MHz repetition rate, 191 fs pulse duration, and over 1 W average power.Apart from the careful third-order dispersion management, we introduce moderate self-phase modulation to broaden the output spectrum of the Er:fiber amplifier and achieve 193 fs pulse duration and 2.43W average power.Over 40% frequency doubling efficiency is obtained by a periodically poled lithium niobate crystal.Delivering through a hollow-core photonic bandgap fiber, this robust laser becomes an ideal and convenient light source for two-photon autofluorescence imaging.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.61475008and 31327901)
文摘We present an Er-doped fiber(Er:fiber)-based femtosecond laser at 780 nm with 256 MHz repetition rate, 191 fs pulse duration, and over 1 W average power.Apart from the careful third-order dispersion management, we introduce moderate self-phase modulation to broaden the output spectrum of the Er:fiber amplifier and achieve 193 fs pulse duration and 2.43W average power.Over 40% frequency doubling efficiency is obtained by a periodically poled lithium niobate crystal.Delivering through a hollow-core photonic bandgap fiber, this robust laser becomes an ideal and convenient light source for two-photon autofluorescence imaging.