[Objectives]This study was conducted to investigate the analgesic effects and acute toxicities of Bidens alba (L.) DC.[Methods]The alcohol extract of B.alba (L.) DC was extracted and separated with petroleum ether and...[Objectives]This study was conducted to investigate the analgesic effects and acute toxicities of Bidens alba (L.) DC.[Methods]The alcohol extract of B.alba (L.) DC was extracted and separated with petroleum ether and chloroform successively.The acute toxicities of the two extracts on mice were measured,and then the analgesic effects were measured with writhing pain model induced by acetic acid.[Results]No mice died when the crude dosages of B.alba (L.) DC from petroleum ether extract and chloroform extract were 5 016 and 5 100 mg/kg,respectively.When the petroleum ether extract was 60.0 mg/kg,the percentage of twisted mice induced by acetic acid was 40%,the analgesic rate was 77.5%,and the time of the first writhing was (294.0±165.8) s;when the chloroform extract was 20.0 mg/kg,the percentage of twisted animals was 55.6%,the analgesic rate was 51.5%,and the time of the first writhing was (273.8 ±153.4) s;and when the chloroform extract was 4.0 mg/kg,the percentage of twisted animals was 40%,and the analgesic rate was 62.1%,and the time of the first writhing was (370.6±231.3) s.[Conclusions]The petroleum ether extracts and chloroform extracts of B.alba (L.) DC have good analgesic effects and no acute toxicities.展开更多
In the search for sustainable alternatives to harmful synthetic fibers,an increasing amount of research focuses on biomimicry and natural fibers.Sea silk is an exceptional textile material.It is a kind of natural silk...In the search for sustainable alternatives to harmful synthetic fibers,an increasing amount of research focuses on biomimicry and natural fibers.Sea silk is an exceptional textile material.It is a kind of natural silk produced using the long silky filaments secreted by a specific bivalve mollusk(Pinna nobilis);now at edge of extinction.This paper suggests a simple but effective way to prepare artificial sea silk from Mytilus edulis.A sea silk solution is prepared using a Mytilus edulis protein,and a polyvinyl alcohol(PVA)solution is mixed with the sea silk solution in order to produce artificial sea silk through a bubble electrospinning technique.The effects of the sea silk concentration on the nanofiber’s morphology and mechanical properties are studied experimentally.展开更多
Regulation of perovskite growth plays a critical role in the development of high-performance optoelectronic devices.However,judicious control of the grain growth for perovskite light emitting diodes is elusive due to ...Regulation of perovskite growth plays a critical role in the development of high-performance optoelectronic devices.However,judicious control of the grain growth for perovskite light emitting diodes is elusive due to its multiple requirements in terms of morphology,composition,and defect.Herein,we demonstrate a supramolecular dynamic coordination strategy to regulate perovskite crystallization.The combined use of crown ether and sodium trifluoroacetate can coordinate with A site and B site cations in ABX_(3) perovskite,respectively.The formation of supramolecular structure retard perovskite nucleation,while the transformation of supramolecular intermediate structure enables the release of components for slow perovskite growth.This judicious control enables a segmented growth,inducing the growth of insular nanocrystal consist of low-dimensional structure.Light emitting diode based on this perovskite film eventually brings a peak external quantum efficiency up to 23.9%,ranking among the highest efficiency achieved.The homogeneous nano-island structure also enables high-efficiency large area(1 cm^(2))device up to 21.6%,and a record high value of 13.6%for highly semi-transparent ones.展开更多
Sn-based perovskites are promising thin-film photovoltaic materials for their ideal bandgap and the eco-friendliness of Sn,but the performance of Sn-based perovskite solar cells is hindered by the short carrier diffus...Sn-based perovskites are promising thin-film photovoltaic materials for their ideal bandgap and the eco-friendliness of Sn,but the performance of Sn-based perovskite solar cells is hindered by the short carrier diffusion length and large defect density in nominally-synthesized Sn-based perovskite films.Herein we demonstrate that a long carrier diffusion length is achievable in quasi-2D Sn-based perovskite films consisting of high-member low-dimensional Ruddlesden-Popper(RP)phases with a preferred crystal orientation distribution.The key to the film synthesis is the use of a molecular additive formed by phenylethylammonium cations and optimally mixed halide-pseudohalide anions,which favorably tailors the quasi-2D Sn-based perovskite crystallization kinetics.The high-member RP film structure effectively enhances device short-circuit current density,giving rise to an increased power conversion efficiency(PCE)of 14.6%.The resulting device demonstrates a near-unity shelf stability upon1,000 h in nitrogen.A high reproductivity is also achieved with a count of 50 devices showing PCEs within a narrow range from minimum 13.0%to maximum 14.6%.展开更多
With efficiency of perovskite solar cells(PSCs) overpassing 23%, to realize their commercialization, the biggest challenge now is to boost the stability to the same level as conventional solar cells. Thus, tremendous ...With efficiency of perovskite solar cells(PSCs) overpassing 23%, to realize their commercialization, the biggest challenge now is to boost the stability to the same level as conventional solar cells. Thus, tremendous effort has been directed over the past few years toward improving the stability of these cells. Various methods were used to improve the stability of bulk perovskites,including compositional engineering, interface adjustment, dimensional manipulation, crystal engineering, and grain boundary decoration. Diverse device configurations, carrier transporting layers, and counter electrodes are investigated. To compare the stability of PSCs and clarify the degradation mechanism, diverse characterization methods were developed. Overall stability of PSCs has become one central topic for the development of PSCs. In this review, we summarize the state-of-the-art progress on the improvement of device stability and discuss the directions for future research, hoping it provides an overview of the current status of the research on the stability of PSCs and guidelines for future research.展开更多
Narrow-bandgap tin-lead(Sn-Pb)mixed perovskite solar cells(PSCs)play a key role in constructing perovskite tandem solar cells that are potential to overpass Shockley-Queisser limit.A robust,chemically stable and lowte...Narrow-bandgap tin-lead(Sn-Pb)mixed perovskite solar cells(PSCs)play a key role in constructing perovskite tandem solar cells that are potential to overpass Shockley-Queisser limit.A robust,chemically stable and lowtemperature-processed hole transporting layer(HTL)is essential for building high-efficiency Sn-Pb solar cells and perovskite tandem solar cells.Here,we explore a roomtemperature-processed NiOx(L-NiOx)HTL based on nanocrystals(NCs)for Sn-Pb PSCs.In comparison with hightemperature-annealed NiOx(H-NiOx)film,the L-NiOx film shows deeper valence band and lower trap density,which increases the built-in potential and reduces carrier recombination,leading to a power conversion efficiency of 18.77%,the record for NiOx-based narrow-bandgap PSCs.Furthermore,the device maintains about 96%of its original efficiency after 50 days.This work provides a robust and room-temperatureprocessed HTL for highly efficient and stable narrow-bandgap PSCs.展开更多
基金Supported by Special Fund for Scientific and Technological Development of Guangdong Province(2017A020225023)President Fund of Guangdong Academy of Agricultural Sciences(201627)Special Research Fund for Medical and Health of Huadu District of Guangzhou City(17-HDWS-037)
文摘[Objectives]This study was conducted to investigate the analgesic effects and acute toxicities of Bidens alba (L.) DC.[Methods]The alcohol extract of B.alba (L.) DC was extracted and separated with petroleum ether and chloroform successively.The acute toxicities of the two extracts on mice were measured,and then the analgesic effects were measured with writhing pain model induced by acetic acid.[Results]No mice died when the crude dosages of B.alba (L.) DC from petroleum ether extract and chloroform extract were 5 016 and 5 100 mg/kg,respectively.When the petroleum ether extract was 60.0 mg/kg,the percentage of twisted mice induced by acetic acid was 40%,the analgesic rate was 77.5%,and the time of the first writhing was (294.0±165.8) s;when the chloroform extract was 20.0 mg/kg,the percentage of twisted animals was 55.6%,the analgesic rate was 51.5%,and the time of the first writhing was (273.8 ±153.4) s;and when the chloroform extract was 4.0 mg/kg,the percentage of twisted animals was 40%,and the analgesic rate was 62.1%,and the time of the first writhing was (370.6±231.3) s.[Conclusions]The petroleum ether extracts and chloroform extracts of B.alba (L.) DC have good analgesic effects and no acute toxicities.
基金the Foundation of Xi’an University of Architecture and Technology in 2020[Tian Dan]The Natural Science Foundation of Shaan Xi Province in 2019[2019JQ-755]the Natural Science Foundation of Shaanxi Provincial Department of Education in 2019[19JK0462].
文摘In the search for sustainable alternatives to harmful synthetic fibers,an increasing amount of research focuses on biomimicry and natural fibers.Sea silk is an exceptional textile material.It is a kind of natural silk produced using the long silky filaments secreted by a specific bivalve mollusk(Pinna nobilis);now at edge of extinction.This paper suggests a simple but effective way to prepare artificial sea silk from Mytilus edulis.A sea silk solution is prepared using a Mytilus edulis protein,and a polyvinyl alcohol(PVA)solution is mixed with the sea silk solution in order to produce artificial sea silk through a bubble electrospinning technique.The effects of the sea silk concentration on the nanofiber’s morphology and mechanical properties are studied experimentally.
基金The authors gratefully acknowledge financial support from the National Natural Science Foundation of China(Nos.61935016,92056119,22175118,62288102,62274135)National Key Research and Development Program of China(under Grants No.2021YFA0715502)+2 种基金Double First-Class Initiative Fund of ShanghaiTech University,and the Science and Technology Commission of Shanghai Municipality(Nos.20XD1402500 and 20JC1415800)Bertil och Britt Svenssons Stiftelse and Swedish Energy Agency(P2022-00394)The authors appreciate the Instrument Analysis Center and Centre for High-resolution Electron Microscopy(CħEM)and the high-performance computing(HPC)Platform of ShanghaiTech University.The authors gratefully thank professor John A.McGuire for the helpful discussion.
文摘Regulation of perovskite growth plays a critical role in the development of high-performance optoelectronic devices.However,judicious control of the grain growth for perovskite light emitting diodes is elusive due to its multiple requirements in terms of morphology,composition,and defect.Herein,we demonstrate a supramolecular dynamic coordination strategy to regulate perovskite crystallization.The combined use of crown ether and sodium trifluoroacetate can coordinate with A site and B site cations in ABX_(3) perovskite,respectively.The formation of supramolecular structure retard perovskite nucleation,while the transformation of supramolecular intermediate structure enables the release of components for slow perovskite growth.This judicious control enables a segmented growth,inducing the growth of insular nanocrystal consist of low-dimensional structure.Light emitting diode based on this perovskite film eventually brings a peak external quantum efficiency up to 23.9%,ranking among the highest efficiency achieved.The homogeneous nano-island structure also enables high-efficiency large area(1 cm^(2))device up to 21.6%,and a record high value of 13.6%for highly semi-transparent ones.
基金financially supported from the National Key Research and Development Program of China(2021YFA0715502)the National Natural Science Foundation of China(61935016,92056119,22175118)+9 种基金the Science and Technology Commission of Shanghai Municipality(20XD1402500,20JC1415800)Shanghai Tech start-up fundingthe Early Career Scheme(22300221)from the Hong Kong Research Grant Councilthe Excellent Young Scientists Funds(52222318)from National Natural Science Foundation of Chinathe start-up grants,the Initiation Grant-Faculty Niche Research Areas(IG-FNRA)2020/21the Interdisciplinary Research Matching Scheme(IRMS)2020/21 of Hong Kong Baptist Universitysupport from the Hong Kong Research Grant Council(16302520)Seed Funding from the University Research Committee(URC)of the University of Hong Kongpartially supported by the Centre for High-Resolution Electron Microscopy(ChEM),SPST,Shanghai Tech University under contract No.EM02161943the Analytical Instrumentation Center,SPST,Shanghai Tech University under contract No.SPST-AIC10112914。
文摘Sn-based perovskites are promising thin-film photovoltaic materials for their ideal bandgap and the eco-friendliness of Sn,but the performance of Sn-based perovskite solar cells is hindered by the short carrier diffusion length and large defect density in nominally-synthesized Sn-based perovskite films.Herein we demonstrate that a long carrier diffusion length is achievable in quasi-2D Sn-based perovskite films consisting of high-member low-dimensional Ruddlesden-Popper(RP)phases with a preferred crystal orientation distribution.The key to the film synthesis is the use of a molecular additive formed by phenylethylammonium cations and optimally mixed halide-pseudohalide anions,which favorably tailors the quasi-2D Sn-based perovskite crystallization kinetics.The high-member RP film structure effectively enhances device short-circuit current density,giving rise to an increased power conversion efficiency(PCE)of 14.6%.The resulting device demonstrates a near-unity shelf stability upon1,000 h in nitrogen.A high reproductivity is also achieved with a count of 50 devices showing PCEs within a narrow range from minimum 13.0%to maximum 14.6%.
基金supported by the the National Key Research and Development Program of China (2015AA034601, 2016YFA0204000)the National Natural Sciences Foundation of China (21571129, 21702069, 91733301, 91433203, 61474049, 51502141, 51761145042, 51627803, 91433205, 51421002, 11874402)+5 种基金ShanghaiTech Start-up Fundingthe Fundamental Research Funds for the Central Universitiesthe Program for HUST Academic Frontier Youth Teamthe Science and Technology Department of Hubei Province (2017AAA190)the Double first-class research funding of China-EU Institute for Clean and Renewable Energy (RP-2018-SOLAR-001, RP-2018-SOLAR-002)the International Partnership Program of Chinese Academy of Sciences (112111KYSB20170089)
文摘With efficiency of perovskite solar cells(PSCs) overpassing 23%, to realize their commercialization, the biggest challenge now is to boost the stability to the same level as conventional solar cells. Thus, tremendous effort has been directed over the past few years toward improving the stability of these cells. Various methods were used to improve the stability of bulk perovskites,including compositional engineering, interface adjustment, dimensional manipulation, crystal engineering, and grain boundary decoration. Diverse device configurations, carrier transporting layers, and counter electrodes are investigated. To compare the stability of PSCs and clarify the degradation mechanism, diverse characterization methods were developed. Overall stability of PSCs has become one central topic for the development of PSCs. In this review, we summarize the state-of-the-art progress on the improvement of device stability and discuss the directions for future research, hoping it provides an overview of the current status of the research on the stability of PSCs and guidelines for future research.
基金the National Key Research and Development Program of China(2016YFA0204000)the National Natural Science Foundation of China(61935016,U1632118 and 21571129)+3 种基金start-up funding from ShanghaiTech Universitythe Center for High-resolution Electron Microscopy(C?EM)at ShanghaiTech University(EM02161943)Young 1000 Talents ProgramScience Fund for Creative Research Groups(21421004)。
文摘Narrow-bandgap tin-lead(Sn-Pb)mixed perovskite solar cells(PSCs)play a key role in constructing perovskite tandem solar cells that are potential to overpass Shockley-Queisser limit.A robust,chemically stable and lowtemperature-processed hole transporting layer(HTL)is essential for building high-efficiency Sn-Pb solar cells and perovskite tandem solar cells.Here,we explore a roomtemperature-processed NiOx(L-NiOx)HTL based on nanocrystals(NCs)for Sn-Pb PSCs.In comparison with hightemperature-annealed NiOx(H-NiOx)film,the L-NiOx film shows deeper valence band and lower trap density,which increases the built-in potential and reduces carrier recombination,leading to a power conversion efficiency of 18.77%,the record for NiOx-based narrow-bandgap PSCs.Furthermore,the device maintains about 96%of its original efficiency after 50 days.This work provides a robust and room-temperatureprocessed HTL for highly efficient and stable narrow-bandgap PSCs.