We design a four-band terahertz metamaterial absorber that relied on the block Dirac semi-metal(BDS).It is composed of a Dirac material layer,a gold reflecting layer,and a photonic crystal slab(PCS)medium layer.This s...We design a four-band terahertz metamaterial absorber that relied on the block Dirac semi-metal(BDS).It is composed of a Dirac material layer,a gold reflecting layer,and a photonic crystal slab(PCS)medium layer.This structure achieved perfect absorption of over 97%at 4.06 THz,6.15 THz,and 8.16 THz.The high absorption can be explained by the localized surface plasmon resonance(LSPR).And this conclusion can be proved by the detailed design of the surface structure.Moreover,the resonant frequency of the device can be dynamically tuned by changing the Fermi energy of the BDS.Due to the advantages such as high absorption,adjustable resonance,and anti-interference of incident angle and polarization mode,the Dirac semi-metal perfect absorber(DSPA)has great potential value in fields such as biochemical sensing,information communication,and nondestructive detection.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11604311,61705204,and 21506257)the Scientific Research Fund from Sichuan Provincial Science and Technology Department(Grant Nos.2020YJ0137 and 2020YFG0467)+2 种基金the Undergraduate Innovation Fund by Southwest University of Science and Technology(Grant No.JZ20-027)the Fund by the School of Science of Southwest University of Science and Technology for the Innovation Fund Project(Grant No.LX2020010)the Undergraduate Innovation and Entrepreneurship Training Program of Southwest University of Science and Technology(Grant No.S202010619073).
文摘We design a four-band terahertz metamaterial absorber that relied on the block Dirac semi-metal(BDS).It is composed of a Dirac material layer,a gold reflecting layer,and a photonic crystal slab(PCS)medium layer.This structure achieved perfect absorption of over 97%at 4.06 THz,6.15 THz,and 8.16 THz.The high absorption can be explained by the localized surface plasmon resonance(LSPR).And this conclusion can be proved by the detailed design of the surface structure.Moreover,the resonant frequency of the device can be dynamically tuned by changing the Fermi energy of the BDS.Due to the advantages such as high absorption,adjustable resonance,and anti-interference of incident angle and polarization mode,the Dirac semi-metal perfect absorber(DSPA)has great potential value in fields such as biochemical sensing,information communication,and nondestructive detection.