The residual stresses in the wall of a SUS304 stainless steel cylindrical drawing cup were evaluated by split-ring tests, and the influences of stamping die parame- ters on the residual stress were investigated. A new...The residual stresses in the wall of a SUS304 stainless steel cylindrical drawing cup were evaluated by split-ring tests, and the influences of stamping die parame- ters on the residual stress were investigated. A new theoretical model of a split-ring test was developed to evaluate the resid- ual stress in a ring, which was verified to be reasonable and reliable by numerical simulations with ABAQUS code and by nanoindentation tests. Seven groups of split-ring tests were completed, and the residual stresses were calculated according to the theoretical model. The split-ring test results showed that the circumferential residual stress in the wall of the SUS304 stainless steel cylindrical drawing cup was very large and did not change with the different die comer radius. The circumferential residual stress first increased with the increase of drawing punch-die clearance, then was almost unchanged when the clearance increased greater than blank thickness 1 mm. Thus, a smaller clearance was suggested to be chosen to reduce the residual stress in the wall of the SUS304 stainless steel drawing cup.展开更多
基金supported in part by Xiangtan University Doctoral Fund, China (Grant 12QDZ17)the Excellent Youth Program of Education Bureau of Hunan Province, China (Grant 12B124)the Key Program of Hunan Provincial Natural Science Foundation United with Xiangtan, China (Grant 13JJ8005)
文摘The residual stresses in the wall of a SUS304 stainless steel cylindrical drawing cup were evaluated by split-ring tests, and the influences of stamping die parame- ters on the residual stress were investigated. A new theoretical model of a split-ring test was developed to evaluate the resid- ual stress in a ring, which was verified to be reasonable and reliable by numerical simulations with ABAQUS code and by nanoindentation tests. Seven groups of split-ring tests were completed, and the residual stresses were calculated according to the theoretical model. The split-ring test results showed that the circumferential residual stress in the wall of the SUS304 stainless steel cylindrical drawing cup was very large and did not change with the different die comer radius. The circumferential residual stress first increased with the increase of drawing punch-die clearance, then was almost unchanged when the clearance increased greater than blank thickness 1 mm. Thus, a smaller clearance was suggested to be chosen to reduce the residual stress in the wall of the SUS304 stainless steel drawing cup.