The non-noble metal oxygen reduction reaction(ORR) catalysts prepared by carbonization of metal–organic framework(MOF) have attracted more and more attentions in the fields of fuel cells and metal-air batteries due t...The non-noble metal oxygen reduction reaction(ORR) catalysts prepared by carbonization of metal–organic framework(MOF) have attracted more and more attentions in the fields of fuel cells and metal-air batteries due to their unique intrinsic advantages such as high catalytic activity, low price, simple synthesis and good adaptability. Different from the study of traditional high active noble metal catalysts, this review systematically summarizes recent developments on non-noble metal(Fe,Co, Cu, Ni, Mn and Mo) ORR catalysts prepared by various MOFs carbonization in different metal centers. The effects of synthesis strategies and pyrolysis conditions on the catalyst properties are discussed. Meanwhile, the key parameters of catalytic performances(including active sites, dispersed state and specific surface area) are discussed and the prospect is presented. It is expected that this review will provide effective guidance for future studies on carbonized non-noble MOFs for ORR electrochemical catalyst.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.21873027 and 21908046)Hubei Natural Science Foundation (No.2019CFB293)Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules (No.KLSAOFM1802)。
文摘The non-noble metal oxygen reduction reaction(ORR) catalysts prepared by carbonization of metal–organic framework(MOF) have attracted more and more attentions in the fields of fuel cells and metal-air batteries due to their unique intrinsic advantages such as high catalytic activity, low price, simple synthesis and good adaptability. Different from the study of traditional high active noble metal catalysts, this review systematically summarizes recent developments on non-noble metal(Fe,Co, Cu, Ni, Mn and Mo) ORR catalysts prepared by various MOFs carbonization in different metal centers. The effects of synthesis strategies and pyrolysis conditions on the catalyst properties are discussed. Meanwhile, the key parameters of catalytic performances(including active sites, dispersed state and specific surface area) are discussed and the prospect is presented. It is expected that this review will provide effective guidance for future studies on carbonized non-noble MOFs for ORR electrochemical catalyst.