Gallium oxide(Ga_(2)O_(3))based flexible heterojunction type deep ultraviolet(UV)photodetectors show excellent solar-blind photoelectric performance,even when not powered,which makes them ideal for use in intelligent ...Gallium oxide(Ga_(2)O_(3))based flexible heterojunction type deep ultraviolet(UV)photodetectors show excellent solar-blind photoelectric performance,even when not powered,which makes them ideal for use in intelligent wearable devices.How-ever,traditional flexible photodetectors are prone to damage during use due to poor toughness,which reduces the service life of these devices.Self-healing hydrogels have been demonstrated to have the ability to repair damage and their combination with Ga_(2)O_(3) could potentially improve the lifetime of the flexible photodetectors while maintaining their performance.Herein,a novel self-healing and self-powered flexible photodetector has been constructed onto the hydrogel substrate,which exhibits an excellent responsivity of 0.24 mA/W under 254 nm UV light at zero bias due to the built-in electric field originating from the PEDOT:PSS/Ga_(2)O_(3) heterojunction.The self-healing of the Ga_(2)O_(3) based photodetector was enabled by the reversible property of the synthesis of agarose and polyvinyl alcohol double network,which allows the photodetector to recover its original configu-ration and function after damage.After self-healing,the photocurrent of the photodetector decreases from 1.23 to 1.21μA,while the dark current rises from 0.95 to 0.97μA,with a barely unchanged of photoresponse speed.Such a remarkable recov-ery capability and the photodetector’s superior photoelectric performance not only significantly enhance a device lifespan but also present new possibilities to develop wearable and intelligent electronics in the future.展开更多
Multicomponent oxide(Ga_(x)In_(1−x))_(2)O_(3)films are prepared on(0001)sapphire substrates to realize a tunable band-gap by magnetron sputtering technology followed by thermal annealing.The optical properties and ban...Multicomponent oxide(Ga_(x)In_(1−x))_(2)O_(3)films are prepared on(0001)sapphire substrates to realize a tunable band-gap by magnetron sputtering technology followed by thermal annealing.The optical properties and band structure evolution over the whole range of compositions in ternary compounds(Ga_(x)In_(1−x))_(2)O_(3)are investigated in detail.The X-ray diffraction spectra clearly indicate that(Ga_(x)In_(1−x))_(2)O_(3)films with Ga content varying from 0.11 to 0.55 have both cubic and monoclinic structures,and that for films with Ga content higher than 0.74,only the monoclinic structure appears.The transmittance of all films is greater than 86%in the visible range with sharp absorption edges and clear fringes.In addition,a blue shift of ultraviolet absorption edges from 380 to 250 nm is noted with increasing Ga content,indicating increasing band-gap energy from 3.61 to 4.64 eV.The experimental results lay a foundation for the application of transparent conductive compound(Ga_(x)In_(1−x))_(2)O_(3)thin films in photoelectric and photovoltaic industry,especially in display,light-emitting diode,and solar cell applications.展开更多
基金supported by the National Natural Science Foundation of China(No.62274148),Science Foundation of Zhejiang Sci-Tech University(Nos.22062337-Y,20062224-Y,22062291-Y)Guangxi key laboratory of precision navigation technology and application[Guilin University of Electronic Technology](No.DH202229).
文摘Gallium oxide(Ga_(2)O_(3))based flexible heterojunction type deep ultraviolet(UV)photodetectors show excellent solar-blind photoelectric performance,even when not powered,which makes them ideal for use in intelligent wearable devices.How-ever,traditional flexible photodetectors are prone to damage during use due to poor toughness,which reduces the service life of these devices.Self-healing hydrogels have been demonstrated to have the ability to repair damage and their combination with Ga_(2)O_(3) could potentially improve the lifetime of the flexible photodetectors while maintaining their performance.Herein,a novel self-healing and self-powered flexible photodetector has been constructed onto the hydrogel substrate,which exhibits an excellent responsivity of 0.24 mA/W under 254 nm UV light at zero bias due to the built-in electric field originating from the PEDOT:PSS/Ga_(2)O_(3) heterojunction.The self-healing of the Ga_(2)O_(3) based photodetector was enabled by the reversible property of the synthesis of agarose and polyvinyl alcohol double network,which allows the photodetector to recover its original configu-ration and function after damage.After self-healing,the photocurrent of the photodetector decreases from 1.23 to 1.21μA,while the dark current rises from 0.95 to 0.97μA,with a barely unchanged of photoresponse speed.Such a remarkable recov-ery capability and the photodetector’s superior photoelectric performance not only significantly enhance a device lifespan but also present new possibilities to develop wearable and intelligent electronics in the future.
基金Project supported by the National Natural Science Foundation of China(Nos.61764001,61665001,51665009,11965009,61874036,and 61805053)the Guangxi Science and Technology Base and Talent Special Project,China(Nos.AD18281084,AD18281030,AD18281034,and AD18281037)+3 种基金the Guangxi Key Laboratory of Precision Navigation Technology and Application,China(No.DH201808)the One Hundred Person Project of Guangxi as well as the Thousands of Key Teacher Training Project of Guangxi Education Department,Chinathe Innovation Project of Guilin University of Electronic Technology Graduate Education,China(No.2019YCXS021)the Natural Science Foundation of Shanghai,China(No.19ZR1420100)。
文摘Multicomponent oxide(Ga_(x)In_(1−x))_(2)O_(3)films are prepared on(0001)sapphire substrates to realize a tunable band-gap by magnetron sputtering technology followed by thermal annealing.The optical properties and band structure evolution over the whole range of compositions in ternary compounds(Ga_(x)In_(1−x))_(2)O_(3)are investigated in detail.The X-ray diffraction spectra clearly indicate that(Ga_(x)In_(1−x))_(2)O_(3)films with Ga content varying from 0.11 to 0.55 have both cubic and monoclinic structures,and that for films with Ga content higher than 0.74,only the monoclinic structure appears.The transmittance of all films is greater than 86%in the visible range with sharp absorption edges and clear fringes.In addition,a blue shift of ultraviolet absorption edges from 380 to 250 nm is noted with increasing Ga content,indicating increasing band-gap energy from 3.61 to 4.64 eV.The experimental results lay a foundation for the application of transparent conductive compound(Ga_(x)In_(1−x))_(2)O_(3)thin films in photoelectric and photovoltaic industry,especially in display,light-emitting diode,and solar cell applications.