Large Eddy Simulation(LES)has been employed for the investigation of supersonic flow characteristics in five ducts with varying cross-sectional geometries.The numerical results reveal that flow channel configurations ...Large Eddy Simulation(LES)has been employed for the investigation of supersonic flow characteristics in five ducts with varying cross-sectional geometries.The numerical results reveal that flow channel configurations exert a considerable influence on the mainstream flow and the near-wall flow behavior.In contrast to straight ducts,square-to-circular and rectangular-to-circular ducts exhibit thicker boundary layers and a greater presence of vortex structures.Given the same inlet area,rectangular-to-circular ducts lead to higher flow drag force and total pressure loss than square-to-circular ducts.Characterized by the substantial flow separation and shock waves,the"S-shaped duct shows significant vertically-asymmetric characteristics.展开更多
In response to the development of deep-sea oil and gas resources,which require a high degree of cooperation by crude oil transportation equipment,a new type of ship known as the cargo transfer vessel(CTV)has been deve...In response to the development of deep-sea oil and gas resources,which require a high degree of cooperation by crude oil transportation equipment,a new type of ship known as the cargo transfer vessel(CTV)has been developed.To provide a theoretical reference for the design and equipment of the CTV’s dynamic positioning system,in this paper,we take the new deepwater CTVas the study object and theoretically and numerically analyze its operation,wind load,current load,wave load,and navigational resistance in a range of Brazilian sea conditions with respect to its positioning and towing modes.We confirm that our proposed method can successfully calculate the total environmental load of the CTVand that the CTV is able to operate normally under the designed sea conditions.展开更多
It has been found that the static pressure distribution along the axial direction of liquid kerosene is lower than that of the gaseous kerosene under the same flow condition and overall equivalent ratio from previous ...It has been found that the static pressure distribution along the axial direction of liquid kerosene is lower than that of the gaseous kerosene under the same flow condition and overall equivalent ratio from previous studies.To further investigate this phenomenon,a compressible two-phase parallel simulation method is utilized to analyze the mixing and combustion characteristics of gaseous and liquid kerosene jets in a cavity-based supersonic combustor.The numerical results are consistent with the experiments and demonstrate that gaseous injection leads to a cavity shear layer that dives deeper into the cavity,forming two recirculation zones in the front and rear of the cavity.In contrast,the cavity shear layer is closer to the mainstream during liquid injection,and only a large recirculation zone is formed in the rear of the cavity.As a result of the cavity shear layer and the recirculating flow,the fuel vapor of gaseous injection accumulates in the front of the cavity,while for the liquid injection,the fuel vapor disperses in the cavity,cavity shear layer,and the region above,and the rear of the cavity has a higher fuel vapor concentration than the front.This unique fuel distribution causes the combustion area to be concentrated in the cavity during the gaseous injection but dispersed inside and downstream of the cavity during the liquid injection.As a result,forming a thermal throat under the same conditions is more challenging during liquid injection,and the generated static pressure distribution is lower than that during the gaseous injection.展开更多
基金the National Natural Science Foundation of China(Grant Nos.92252206,12102471 and 11925207)。
文摘Large Eddy Simulation(LES)has been employed for the investigation of supersonic flow characteristics in five ducts with varying cross-sectional geometries.The numerical results reveal that flow channel configurations exert a considerable influence on the mainstream flow and the near-wall flow behavior.In contrast to straight ducts,square-to-circular and rectangular-to-circular ducts exhibit thicker boundary layers and a greater presence of vortex structures.Given the same inlet area,rectangular-to-circular ducts lead to higher flow drag force and total pressure loss than square-to-circular ducts.Characterized by the substantial flow separation and shock waves,the"S-shaped duct shows significant vertically-asymmetric characteristics.
基金supported by the National Natural Science Foundation of China(Grant No.51509046)Foundation of Ministry of Industry and Information Technology High-tech Ship Scientific Research(Grant No.2016-26)
文摘In response to the development of deep-sea oil and gas resources,which require a high degree of cooperation by crude oil transportation equipment,a new type of ship known as the cargo transfer vessel(CTV)has been developed.To provide a theoretical reference for the design and equipment of the CTV’s dynamic positioning system,in this paper,we take the new deepwater CTVas the study object and theoretically and numerically analyze its operation,wind load,current load,wave load,and navigational resistance in a range of Brazilian sea conditions with respect to its positioning and towing modes.We confirm that our proposed method can successfully calculate the total environmental load of the CTVand that the CTV is able to operate normally under the designed sea conditions.
基金supported by the National Natural Science Foundation of China (Nos.92252206,11925207,T2221002 and 12102472)。
文摘It has been found that the static pressure distribution along the axial direction of liquid kerosene is lower than that of the gaseous kerosene under the same flow condition and overall equivalent ratio from previous studies.To further investigate this phenomenon,a compressible two-phase parallel simulation method is utilized to analyze the mixing and combustion characteristics of gaseous and liquid kerosene jets in a cavity-based supersonic combustor.The numerical results are consistent with the experiments and demonstrate that gaseous injection leads to a cavity shear layer that dives deeper into the cavity,forming two recirculation zones in the front and rear of the cavity.In contrast,the cavity shear layer is closer to the mainstream during liquid injection,and only a large recirculation zone is formed in the rear of the cavity.As a result of the cavity shear layer and the recirculating flow,the fuel vapor of gaseous injection accumulates in the front of the cavity,while for the liquid injection,the fuel vapor disperses in the cavity,cavity shear layer,and the region above,and the rear of the cavity has a higher fuel vapor concentration than the front.This unique fuel distribution causes the combustion area to be concentrated in the cavity during the gaseous injection but dispersed inside and downstream of the cavity during the liquid injection.As a result,forming a thermal throat under the same conditions is more challenging during liquid injection,and the generated static pressure distribution is lower than that during the gaseous injection.