期刊文献+

二次检索

题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
共找到3篇文章
< 1 >
每页显示 20 50 100
Plasmon-mediated photodecomposition of NH3 via intramolecular charge transfer 被引量:3
1
作者 Yimin Zhang Weite Meng +3 位作者 daqiang chen Lili Zhang Shunfang Li Sheng Meng 《Nano Research》 SCIE EI CSCD 2022年第5期3894-3900,共7页
As an excellent clean medium for hydrogen storage and fuel cell applications,the photolysis of ammonia via localized surface plasmon could be invoked as a promising route towards significantly reducing the temperature... As an excellent clean medium for hydrogen storage and fuel cell applications,the photolysis of ammonia via localized surface plasmon could be invoked as a promising route towards significantly reducing the temperature for conventional thermolysis.Here,we explore the underlying microscopic mechanism of ultrafast carrier dynamics in plasmon-mediated NH3 photodecomposition at the single-molecular level using real-time time-dependent density functional theory.The NH_(3)molecule adsorbed on the tip of archetypal magic metal clusters represented by tetrahedral Ag_(2)0 and icosahedral Ag147,splits within a hundred femtoseconds upon laser pulse illumination.We found that the splitting of the first N-H bond is dominated by the intramolecular charge transfer driven by localized surface plasmon.Surprisingly,the phase of laser pulse could modulate the dynamics of charge transfer and thus affect the plasmon-induced bond breaking.These findings offer a new avenue for NH3 decomposition and provide in-depth insights in designing highly efficient plasmon-mediated photocatalysts. 展开更多
关键词 ammonia photodecomposition localized surface plasmon intramolecular charge transfer time-dependent density functional theory
原文传递
非绝热量子动力学模拟方法及其在凝聚态体系中的应用
2
作者 陈大强 游佩桅 +4 位作者 聂正蔚 武娜 廉超 张萃 孟胜 《科学通报》 EI CAS CSCD 北大核心 2021年第24期3088-3099,共12页
密度泛函理论(density functional theory, DFT)可以准确地预测由电子和原子核组成的普通物质的基态电子结构,而当涉及量子体系含时演化的模拟时,比如模拟超快激光与分子或凝聚态体系相互作用的激发态动力学过程,就需要发展实时密度泛... 密度泛函理论(density functional theory, DFT)可以准确地预测由电子和原子核组成的普通物质的基态电子结构,而当涉及量子体系含时演化的模拟时,比如模拟超快激光与分子或凝聚态体系相互作用的激发态动力学过程,就需要发展实时密度泛函理论(real-time time-dependent density functional theory, rt-TDDFT)和非绝热动力学相结合的新颖计算方法.本文介绍了基于rt-TDDFT的Ehrenfest动力学方法,并结合路径积分分子动力学提出了RPTDAP量子动力学方法. RP-TDAP方法引入了非绝热效应和原子核的量子效应,可以对电子波函数和原子核波包构成的耦合系统进行量子化动力学模拟.这些方法使我们不仅可以准确地理解激发态电子结构、电声相互作用、光致电荷传输、光化学反应等非绝热过程的内在机理,而且可以超越平均场理论给出一个全新的视角来描述原子核的量子行为.本文还应用这些方法研究了几个重要的非绝热动力学现象,说明这些方法可以广泛地用于复杂体系的量子激发超快动力学研究. 展开更多
关键词 第一性原理 非绝热动力学 核量子效应 光激发 含时密度泛函理论
原文传递
Driving forces for ultrafast laser-induced sp^(2) to sp^(3) structural transformation in graphite 被引量:1
3
作者 chenchen Song Mengxue Guan +4 位作者 Yunzhe Jia daqiang chen Jiyu Xu Cui Zhang Sheng Meng 《npj Computational Materials》 SCIE EI CSCD 2023年第1期1591-1597,共7页
Understanding the microscopic mechanism of photoinduced sp^(2)-to-sp^(3) structural transformation in graphite is a scientific challenge with great importance.Here,the ultrafast dynamics and characteristics of laser-i... Understanding the microscopic mechanism of photoinduced sp^(2)-to-sp^(3) structural transformation in graphite is a scientific challenge with great importance.Here,the ultrafast dynamics and characteristics of laser-induced structural transformation in graphite are revealed by non-adiabatic quantum dynamic simulations.Under laser irradiation,graphite undergoes an interlayer compression and sliding stage,followed by a key period of intralayer buckling and interlayer bonding to form an intermediate sp^(2)-sp^(3) hybrid structure,before completing the full transformation to hexagonal diamond.The process is driven by the cooperation of charge carrier multiplication and selective phonon excitations through electron-phonon interactions,in which photoexcited hot electrons scattered into unoccupied high-energy conduction bands play a key role in the introduction of in-plane instability in graphite.This work identifies a photoinduced non-adiabatic transition pathway from graphite to diamond and shows far-reaching implications for designing optically controlled structural phase transition in materials. 展开更多
关键词 structural PHONON INTERLAYER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部