Background The genomes of worldwide poultry breeds divergently selected for performance and other phenotypic traits may also be affected by,and formed due to,past and current admixture events.Adaptation to diverse env...Background The genomes of worldwide poultry breeds divergently selected for performance and other phenotypic traits may also be affected by,and formed due to,past and current admixture events.Adaptation to diverse environments,including acclimation to harsh climatic conditions,has also left selection footprints in breed genomes.Results Using the Chicken 50K_CobbCons SNP chip,we genotyped four divergently selected breeds:two aboriginal,cold tolerant Ushanka and Orloff Mille Fleur,one egg-type Russian White subjected to artificial selection for cold tolerance,and one meat-type White Cornish.Signals of selective sweeps were determined in the studied breeds using three methods:(1)assessment of runs of homozygosity islands,(2)F_(ST) based population differential analysis,and(3)haplotype differentiation analysis.Genomic regions of true selection signatures were identified by two or more methods or in two or more breeds.In these regions,we detected 540 prioritized candidate genes supplemented them with those that occurred in one breed using one statistic and were suggested in other studies.Amongst them,SOX5,ME3,ZNF536,WWP1,RIPK2,OSGIN2,DECR1,TPO,PPARGC1A,BDNF,MSTN,and beta-keratin genes can be especially mentioned as candidates for cold adaptation.Epigenetic factors may be involved in regulating some of these important genes(e.g.,TPO and BDNF).Conclusion Based on a genome-wide scan,our findings can help dissect the genetic architecture underlying various phenotypic traits in chicken breeds.These include genes representing the sine qua non for adaptation to harsh environments.Cold tolerance in acclimated chicken breeds may be developed following one of few specific gene expression mechanisms or more than one overlapping response known in cold-exposed individuals,and this warrants further investigation.展开更多
The worldwide chicken gene pool encompasses a remarkable,but shrinking,number of divergently selected breeds of diverse origin.This study was a large-scale genome-wide analysis of the landscape of the complex molecula...The worldwide chicken gene pool encompasses a remarkable,but shrinking,number of divergently selected breeds of diverse origin.This study was a large-scale genome-wide analysis of the landscape of the complex molecular architecture,genetic variability,and detailed structure among 49 populations.These populations represent a significant sample of the world's chicken breeds from Europe(Russia,Czech Republic,France,Spain,UK,etc.),Asia(China),North America(USA),and Oceania(Australia).Based on the results of breed genotyping using the Illumina 60K single nucleotide polymorphism(SNP)chip,a bioinformatic analysis was carried out.This included the calculation of heterozygosity/homozygosity statistics,inbreeding coefficients,and effective population size.It also included assessment of linkage disequilibrium and construction of phylogenetic trees.Using multidimensional scaling,principal component analysis,and ADMIXTURE-assisted global ancestry analysis,we explored the genetic structure of populations and subpopulations in each breed.An overall 49-population phylogeny analysis was also performed,and a refined evolutionary model of chicken breed formation was proposed,which included egg,meat,dual-purpose types,and ambiguous breeds.Such a large-scale survey of genetic resources in poultry farming using modern genomic methods is of great interest both from the viewpoint of a general understanding of the genetics of the domestic chicken and for the further development of genomic technologies and approaches in poultry breeding.In general,whole genome SNP genotyping of promising chicken breeds from the worldwide gene pool will promote the further development of modern genomic science as applied to poultry.展开更多
基金supported by the Russian Science Foundation within the Project No.21-66-00007support of the Russian Ministry of Science and Higher Education。
文摘Background The genomes of worldwide poultry breeds divergently selected for performance and other phenotypic traits may also be affected by,and formed due to,past and current admixture events.Adaptation to diverse environments,including acclimation to harsh climatic conditions,has also left selection footprints in breed genomes.Results Using the Chicken 50K_CobbCons SNP chip,we genotyped four divergently selected breeds:two aboriginal,cold tolerant Ushanka and Orloff Mille Fleur,one egg-type Russian White subjected to artificial selection for cold tolerance,and one meat-type White Cornish.Signals of selective sweeps were determined in the studied breeds using three methods:(1)assessment of runs of homozygosity islands,(2)F_(ST) based population differential analysis,and(3)haplotype differentiation analysis.Genomic regions of true selection signatures were identified by two or more methods or in two or more breeds.In these regions,we detected 540 prioritized candidate genes supplemented them with those that occurred in one breed using one statistic and were suggested in other studies.Amongst them,SOX5,ME3,ZNF536,WWP1,RIPK2,OSGIN2,DECR1,TPO,PPARGC1A,BDNF,MSTN,and beta-keratin genes can be especially mentioned as candidates for cold adaptation.Epigenetic factors may be involved in regulating some of these important genes(e.g.,TPO and BDNF).Conclusion Based on a genome-wide scan,our findings can help dissect the genetic architecture underlying various phenotypic traits in chicken breeds.These include genes representing the sine qua non for adaptation to harsh environments.Cold tolerance in acclimated chicken breeds may be developed following one of few specific gene expression mechanisms or more than one overlapping response known in cold-exposed individuals,and this warrants further investigation.
基金supported by the Ministry of Science and Higher Education of the Russian Federation(No.075-152021-1037,Internal No.15.BRK.21.0001)。
文摘The worldwide chicken gene pool encompasses a remarkable,but shrinking,number of divergently selected breeds of diverse origin.This study was a large-scale genome-wide analysis of the landscape of the complex molecular architecture,genetic variability,and detailed structure among 49 populations.These populations represent a significant sample of the world's chicken breeds from Europe(Russia,Czech Republic,France,Spain,UK,etc.),Asia(China),North America(USA),and Oceania(Australia).Based on the results of breed genotyping using the Illumina 60K single nucleotide polymorphism(SNP)chip,a bioinformatic analysis was carried out.This included the calculation of heterozygosity/homozygosity statistics,inbreeding coefficients,and effective population size.It also included assessment of linkage disequilibrium and construction of phylogenetic trees.Using multidimensional scaling,principal component analysis,and ADMIXTURE-assisted global ancestry analysis,we explored the genetic structure of populations and subpopulations in each breed.An overall 49-population phylogeny analysis was also performed,and a refined evolutionary model of chicken breed formation was proposed,which included egg,meat,dual-purpose types,and ambiguous breeds.Such a large-scale survey of genetic resources in poultry farming using modern genomic methods is of great interest both from the viewpoint of a general understanding of the genetics of the domestic chicken and for the further development of genomic technologies and approaches in poultry breeding.In general,whole genome SNP genotyping of promising chicken breeds from the worldwide gene pool will promote the further development of modern genomic science as applied to poultry.