期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Geochemical characteristics and metal element enrichment in crusts from seamounts of the Western Pacific 被引量:1
1
作者 Xiaoyu ZHANG Kechao ZHU +5 位作者 Yong DU Fuyuan ZHANG Weiyan ZHANG Xiangwen REN Binbin JIANG dasong huang 《Frontiers of Earth Science》 SCIE CAS CSCD 2016年第1期171-182,共12页
Elemental geochemistry is an essential part of understanding mineralization mechanisms. In this paper, a data set of 544 cobalt crust samples from seamounts of the Western Pacific are used to study the enrichment char... Elemental geochemistry is an essential part of understanding mineralization mechanisms. In this paper, a data set of 544 cobalt crust samples from seamounts of the Western Pacific are used to study the enrichment characteristics of metal elements. REE normalization is utilized to reveal the origin of the crusts; effects of water depth on Co enrichment and impacts ofphosphatization on mineral quality are discussed to obtain the evolution of these marine mineral deposits, which gives support to further resource assessment. Conclusions are reached as follows: 1) Elemental abundances, inter-element relation- ships, and shale-normalized REE patterns for phosphate- poor crusts from different locations reflect hydrogenetic origin of the crusts. EFs (enrichment coefficients) of REE exhibit exponential increase from surface sediments to phosphorite to polymetallic nodules to crusts, suggesting that the improved degree of hydrogeneous origin induces the enrichment of REE. 2) The crusts in the Western Pacific, formed through hotspot produced guyots trails, have relatively lower REE than those in the Mid-Pacific. The latter could be attributed to the peculiar submarine topography of seamounts formed by intraplate volcanism. 3) The non-phosphatized younger crust layers have 40% higher Co than the phosphatized older layers. This indicates the modification of the elemental composition in these crusts by phosphatization. A general depletion of hydroxide-dominated elements such as Co, Ni, and Mn and enrichment of P, Ca, Ba, and Sr is evident in phosphatized crusts, whereas non-phosphatized younger generation crusts are rich in terrigenous aluminosilicate detrital matter. 4) Co increases above the carbonate compensation depth (CCD) from less than 0.53% to over 0.65% in seamount regions with water depth of less than 2,500 m, suggesting the significance of the dissolution of carbonate in the sea water column to the growth and composition of crusts. 展开更多
关键词 cobalt-rich crust SEAMOUNTS Western Pacific geochemical characteristics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部