Improved seed composition in soybean [Glycine max (L.) Merr.] for protein and oil quality is one of the major goals of soybean breeders. A group of genes that act as quantitative traits with their effects can alter pr...Improved seed composition in soybean [Glycine max (L.) Merr.] for protein and oil quality is one of the major goals of soybean breeders. A group of genes that act as quantitative traits with their effects can alter protein, oil, palmitic, stearic, oleic, linoleic, and linolenic acids percentage in soybean seeds. The objective of this study was to identify Quantitative Trait Loci (QTL) controlling protein, oil, and fatty acids content in a set of F5:8 RILs derived from a cross between lines, ‘MD 96-5722’ and ‘Spencer’ using 5376 Single Nucleotide Polymorphism (SNP) markers from the Illumina Infinium SoySNP6K BeadChip array. QTL analysis used WinQTL Cart 2.5 software for composite interval mapping (CIM). Identified, were;one protein content QTL on linkage group (LG-) B2 or chromosome (Chr_) 14;11 QTL associated with oil content on six linkage groups LG-N (Chr_3), LG-A1 (Chr_5), LG-K (Chr_9), LG-F (Chr_13), LG-B2 (Chr_14), and LG-J (Chr_16);and sixteen QTL for five major fatty acids (palmitic, stearic, oleic, linoleic, and linolenic acids) on LG-N (Chr_3), LG-F (Chr_13), LG-B2 (Chr_14), LG-E (Chr_15), LG-J (Chr_16), and LG-G (Chr_18). The SNP markers closely linked to the QTL reported here will be useful for development of cultivars with altered oil and fatty acid compositions in soybean breeding programs.展开更多
Limited information is available on the genetic analysis of amino acid composition in soybean seeds. Previously, quantitative trait loci (QTLs) for seed isoflavones, protein, oil, and fatty acids were identified in t...Limited information is available on the genetic analysis of amino acid composition in soybean seeds. Previously, quantitative trait loci (QTLs) for seed isoflavones, protein, oil, and fatty acids were identified in the “MD96-5722” by “Spencer” and other RIL populations. There were wide variations for these seed constituents among the RIL populations. Therefore, the objective of this study was to identify QTLs controlling different amino acids content in soybean seeds. To achieve this objective, ninety-two F5:7 recombinant inbred lines (RIL), developed from a cross of MD96-5722 and Spencer, using a total 5376 Single Nucleotide Polymorphism (SNPs) markers, were used. The RILs were genotyped by using 537 polymorphic, reliably segregating SNP markers, developed from the Illumina Infinium SoySNP6K BeadChip array. A total of 13 QTLs were identified with three QTLs for threonine on the linkage group (LG) A1, C2, and B2. Two QTLs were identified for each of the amino acids proline on LG D1a and B2, serine on LG A1 and C2, tryptophan on LG K and G, and cysteine on LG A1 and K. One QTL was identified for arginine on LG N and histidine on LG J. The new QTLs findings for seed amino acid will facilitate the development of soybean cultivars with higher protein and amino acid quality to help meet the industry and consumer needs.展开更多
The aim of this research was determine the en- ergy and water use efficiencies under the modification of closed circuit drip irrigation systems designs. Field experiments carried out on transgenic maize (GDH, LL3), (Z...The aim of this research was determine the en- ergy and water use efficiencies under the modification of closed circuit drip irrigation systems designs. Field experiments carried out on transgenic maize (GDH, LL3), (Zea Mays crop) under two types of closed circuits: a) One manifold for lateral lines or Closed circuits with One Manifold of Drip Irrigation System (CM1DIS);b) Closed circuits with Two Manifolds of Drip Irrigation System (CM2DIS), and c) Traditional Drip Irrigation System (TDIS) as a control. Three lengths of lateral lines were used, 40, 60, and 80 meters. PE tubes lateral lines: 16 mm diameter;30 cm emitters distance, and GR built-in emitters 4 lph when operating pressure 1 bar under Two levels slope conditions 0% and 2%. Experiments were conducted at the Agric. Res. Fields., Soil and Plant & Agric. System Dept., Agric. Faculty, Southern Illinois University, Car- bondale (SIUC), Illinois, USA. Under 0% level slope when using CM2DIS the increase percent of Energy Use Efficiency (EUE) were 32.27, 33.21, and 34.37% whereas with CM1DIS were 30.84, 28.96, and 27.45% On the other hand when level slope 2% were with CM2DIS 31.57, 33.14, and 34.25 while CM1DIS were 30.15, 28.98, and 27.53 under lateral lengths 40, 60 and 80 m respectively relative to TDIS. Water Use Efficiency (WUE) when level slope 0% under CM2DIS were 1.67, 1.18, and 0.87 kg/m3 compared to 1.65, 1.16, and 0.86 kg/m3 with CM1DIS and 1.35, 1.04, and 0.75 kg/m3 with TDIS whereas with level slope 2% when using CM2DIS were 1.76, 1.29, and 0.84 kg/m3 compared to 1.77, 1.30, and 0.87 kg/m3 with CM1DIS and 1.41, 1.12, and 0.76 kg/m3 (for lateral lengths 40, 60, and 80 meters respectively). Water saving percent varied widely within individual lateral lengths and between circuit types relative to TDIS. Under slope 0% level CM2DIS water saving percent values were 19.26, 12.48, and 14.03%;with CM1DIS they were 18.51, 10.50, and 12.78%;and under slope level 2% with CM2DIS they were 19.93, 13.26, and 10.38% and CM1DIS were 20.49, 13.96, and 13.23% (for lateral lengths 40, 60, 80 meters respectively). The energy use efficiency and water saving were observed under CM2DIS and CM1DIS when using the shortest lateral length 40 meters, then lateral length 60 meters, while the lowest value was observed when using lateral length 80 meters this result depends on the physical and hydraulic characteristics of the emitters, lateral line uniformity, and friction losses. CM2DIS was more energy use efficiency, EUE, water saving, and WUE than either CM1DIS or TDIS.展开更多
Sucrose, raffinose, and stachyose are important soluble sugars in soybean [Glycine max (L.) Merr.] seeds. Seed sucrose is a desirable trait for taste and flavor. Raffinose and stachyose are undesirable in diets of mon...Sucrose, raffinose, and stachyose are important soluble sugars in soybean [Glycine max (L.) Merr.] seeds. Seed sucrose is a desirable trait for taste and flavor. Raffinose and stachyose are undesirable in diets of monogastric animals, acting as anti-nutritional factors that cause flatulence and abdominal discomfort. Therefore, reducing raffinose and stachyose biosynthesis is considered as a key quality trait goal in soy food and feed industries. The objective of this study was to identify genomic regions containing quantitative trait loci (QTL) controlling sucrose, raffinose, and stachyose in a set of 92 F5:7 recombinant inbred lines (RILs) derived from a cross between the lines “MD96-5722” and “Spencer” by using 5376 Single Nucleotide Polymorphism (SNP) markers from the Illumina Infinium SoySNP6K BeadChip array. Fourteen significant QTL were identified and mapped on eight different linkage groups (LGs) and chromosomes (Chr). Three QTL for seed sucrose content were identified on LGs N (Chr3), K (Chr9), and E (Chr15). Seven QTL were identified for raffinose content on LGs D1a (Chr1), N (Chr3), C2 (Chr6), K (Chr9), B2 (Chr14), and J (Chr16). Four QTL for stachyose content were identified on LG D1a (Chr1), C2 (Chr6), H (Chr12), and B2 (Chr14). Selection for beneficial alleles of these QTLs could facilitate breeding strategies to develop soybean lines with higher concentrations of sucrose and lower levels of raffinose and stachyose.展开更多
Soybean (Glycine max L. Merr.) adaptation to new environments has been hard to predict based on maturity group. The aim of this study was to evaluate the performance of 14 soybean genotypes, from the Soybean Breeding ...Soybean (Glycine max L. Merr.) adaptation to new environments has been hard to predict based on maturity group. The aim of this study was to evaluate the performance of 14 soybean genotypes, from the Soybean Breeding Program of the Federal University of Uberlandia, in their adaptive capacity and seed yield stability at 3 locations and 2 growing seasons. For the adaptability and stability analysis the Toler and Centroid methods were used;5 genotypic groups were identified in the first whereas 4 groups were identified in the latter. By the Toler method group A was composed by 4 genotypes, UFU-001, UFU-003, UFU-0010, and UFU-001. They showed a convex pattern of adaptability and stability. In contrast, the genotypes UFU-008 and UFU-0013 were classified in Group E with a concave pattern of adaptability and stability. Regarding results from the Centroid method, the Genotype UFU-002, with higher seed yield than average, was the only genotype in Ideotype VI with moderate adaptability to favorable environments. In contrast, 10 genotypes were included in the Ideotype V, of medium general adaptability. The genotypes UFU-001, UFU-002, UFU-006, UFU-0010, and UFU-0011 were recommended for use in the Brazilian Cerrado growing region. These genotypes had high seed yield potential in high quality environments.展开更多
Soybean isoflavones compounds such as genistein, daidzein, and glycitein have numerous human health benefits including the reduction of risks of cardiovascular diseases, breast and prostate cancers, and menaupose symp...Soybean isoflavones compounds such as genistein, daidzein, and glycitein have numerous human health benefits including the reduction of risks of cardiovascular diseases, breast and prostate cancers, and menaupose symptoms in women. Understanding the genetic and environmental control of isoflavones accumulation is of great importance for developing new cultivars with high amounts of seed isoflavones. This study was conducted to analyze the effect of row spacing (25 cm vs. 50 cm) on seed isoflavones accumulation using a recombinant inbred line (RIL) population derived from the cross of PI 438489B and “Hamilton” (PIxH, n = 50). The two row spaces generated plant densities of 250,000 plants/ha and 90,000 plants/ha, respectively. Significant differences in soybean seed isoflavones (daidzein, genistein and glycitein) contents have been observed between plants grown in the two different plant densities. The mean daidzein content was 0.03458 μg·g-1 in plants grown in 50 cm row spaces (low plant density), which was significantly higher than its content (0.03019 μg·g-1) in plants grown in 25 cm row spaces (high plant density). Similarly, the mean glycitein content in plants grown in 50 cm row spaces (0.01905 μg·g-1) was significantly higher than its content in plants grown in 25 cm row spaces (0.00498 μg·g-1. Also, the mean genistein content in plants grown in 50 cm row spaces (0.01466 μg·g-1) was higher than its content in plants grown in 25 cm row spaces (0.00831 μg·g-1). These preliminary results are important in guiding farmers and breeders on choosing the best row spaces to grow soybean plants in order to optimize isoflavones contents. Further studies are needed to understand the correlation between seed isoflavones contents and other agronomic traits such as seed yield, protein, and oil contents.展开更多
The aim of this research was determine the ma- ximum application uniformity of closed circuit trickle irrigation systems designs. Laboratory tests carried out for Two types of closed circuits: a) One manifold for late...The aim of this research was determine the ma- ximum application uniformity of closed circuit trickle irrigation systems designs. Laboratory tests carried out for Two types of closed circuits: a) One manifold for lateral lines or Closed circuits with One Manifold of Trikle Irrigation System (COMTIS);b) Closed circuits with Two Manifolds of Trikle Irrigation System (CTMTIS), and c) Traditional Trikle Irrigation System (TTIS) as a control. Three lengths of lateral lines were used, 40, 60, and 80 meters. PE tubes lateral lines: 16 mm diameter;30 cm emitters distance, and GR built-in emitters 4 lph when operating pressure 1 bar. Experiments were conducted at the Agric. Eng. Res. Inst., ARC, MALR, Egypt. With COMTIS the emitter flow rate was 4.07, 3.51, and 3.59 lph compared to 4.18, 3.72, and 3.71 lph with CTMTIS and 3.21, 2.6, and 2.16 lph with TTIS (lateral lengths 40, 60, and 80 meters respectively). Uniformity varied widely within individual lateral lengths and between circuit types. Under CTMTIS uniformity values were 97.74, 95.14, and 92.03 %;with COMTIS they were 95.73, 89.45, and 83.25 %;and with TTIS they were 88.27, 84.73, and 80.53 % (for lateral lengths 40, 60, 80 meters respectively). The greatest uniformity was observed under CTMTIS and COMTIS when using the shortest lateral length 40 meters, then lateral length 60 meters, while the lowest value was observed when using lateral length 80 meters this result depends on the physical and hydraulic characteristics of the emitter and lateral line. CTMTIS was more uniform than either COMTIS or TTIS. Friction losses were decreased with CTMTIS in the emitter laterals at lengths 40 meters compared to TTIS and COMTIS. Therefore, differences may be related to increased friction losses when using TDIS and COMDIS.展开更多
文摘Improved seed composition in soybean [Glycine max (L.) Merr.] for protein and oil quality is one of the major goals of soybean breeders. A group of genes that act as quantitative traits with their effects can alter protein, oil, palmitic, stearic, oleic, linoleic, and linolenic acids percentage in soybean seeds. The objective of this study was to identify Quantitative Trait Loci (QTL) controlling protein, oil, and fatty acids content in a set of F5:8 RILs derived from a cross between lines, ‘MD 96-5722’ and ‘Spencer’ using 5376 Single Nucleotide Polymorphism (SNP) markers from the Illumina Infinium SoySNP6K BeadChip array. QTL analysis used WinQTL Cart 2.5 software for composite interval mapping (CIM). Identified, were;one protein content QTL on linkage group (LG-) B2 or chromosome (Chr_) 14;11 QTL associated with oil content on six linkage groups LG-N (Chr_3), LG-A1 (Chr_5), LG-K (Chr_9), LG-F (Chr_13), LG-B2 (Chr_14), and LG-J (Chr_16);and sixteen QTL for five major fatty acids (palmitic, stearic, oleic, linoleic, and linolenic acids) on LG-N (Chr_3), LG-F (Chr_13), LG-B2 (Chr_14), LG-E (Chr_15), LG-J (Chr_16), and LG-G (Chr_18). The SNP markers closely linked to the QTL reported here will be useful for development of cultivars with altered oil and fatty acid compositions in soybean breeding programs.
文摘Limited information is available on the genetic analysis of amino acid composition in soybean seeds. Previously, quantitative trait loci (QTLs) for seed isoflavones, protein, oil, and fatty acids were identified in the “MD96-5722” by “Spencer” and other RIL populations. There were wide variations for these seed constituents among the RIL populations. Therefore, the objective of this study was to identify QTLs controlling different amino acids content in soybean seeds. To achieve this objective, ninety-two F5:7 recombinant inbred lines (RIL), developed from a cross of MD96-5722 and Spencer, using a total 5376 Single Nucleotide Polymorphism (SNPs) markers, were used. The RILs were genotyped by using 537 polymorphic, reliably segregating SNP markers, developed from the Illumina Infinium SoySNP6K BeadChip array. A total of 13 QTLs were identified with three QTLs for threonine on the linkage group (LG) A1, C2, and B2. Two QTLs were identified for each of the amino acids proline on LG D1a and B2, serine on LG A1 and C2, tryptophan on LG K and G, and cysteine on LG A1 and K. One QTL was identified for arginine on LG N and histidine on LG J. The new QTLs findings for seed amino acid will facilitate the development of soybean cultivars with higher protein and amino acid quality to help meet the industry and consumer needs.
文摘The aim of this research was determine the en- ergy and water use efficiencies under the modification of closed circuit drip irrigation systems designs. Field experiments carried out on transgenic maize (GDH, LL3), (Zea Mays crop) under two types of closed circuits: a) One manifold for lateral lines or Closed circuits with One Manifold of Drip Irrigation System (CM1DIS);b) Closed circuits with Two Manifolds of Drip Irrigation System (CM2DIS), and c) Traditional Drip Irrigation System (TDIS) as a control. Three lengths of lateral lines were used, 40, 60, and 80 meters. PE tubes lateral lines: 16 mm diameter;30 cm emitters distance, and GR built-in emitters 4 lph when operating pressure 1 bar under Two levels slope conditions 0% and 2%. Experiments were conducted at the Agric. Res. Fields., Soil and Plant & Agric. System Dept., Agric. Faculty, Southern Illinois University, Car- bondale (SIUC), Illinois, USA. Under 0% level slope when using CM2DIS the increase percent of Energy Use Efficiency (EUE) were 32.27, 33.21, and 34.37% whereas with CM1DIS were 30.84, 28.96, and 27.45% On the other hand when level slope 2% were with CM2DIS 31.57, 33.14, and 34.25 while CM1DIS were 30.15, 28.98, and 27.53 under lateral lengths 40, 60 and 80 m respectively relative to TDIS. Water Use Efficiency (WUE) when level slope 0% under CM2DIS were 1.67, 1.18, and 0.87 kg/m3 compared to 1.65, 1.16, and 0.86 kg/m3 with CM1DIS and 1.35, 1.04, and 0.75 kg/m3 with TDIS whereas with level slope 2% when using CM2DIS were 1.76, 1.29, and 0.84 kg/m3 compared to 1.77, 1.30, and 0.87 kg/m3 with CM1DIS and 1.41, 1.12, and 0.76 kg/m3 (for lateral lengths 40, 60, and 80 meters respectively). Water saving percent varied widely within individual lateral lengths and between circuit types relative to TDIS. Under slope 0% level CM2DIS water saving percent values were 19.26, 12.48, and 14.03%;with CM1DIS they were 18.51, 10.50, and 12.78%;and under slope level 2% with CM2DIS they were 19.93, 13.26, and 10.38% and CM1DIS were 20.49, 13.96, and 13.23% (for lateral lengths 40, 60, 80 meters respectively). The energy use efficiency and water saving were observed under CM2DIS and CM1DIS when using the shortest lateral length 40 meters, then lateral length 60 meters, while the lowest value was observed when using lateral length 80 meters this result depends on the physical and hydraulic characteristics of the emitters, lateral line uniformity, and friction losses. CM2DIS was more energy use efficiency, EUE, water saving, and WUE than either CM1DIS or TDIS.
文摘Sucrose, raffinose, and stachyose are important soluble sugars in soybean [Glycine max (L.) Merr.] seeds. Seed sucrose is a desirable trait for taste and flavor. Raffinose and stachyose are undesirable in diets of monogastric animals, acting as anti-nutritional factors that cause flatulence and abdominal discomfort. Therefore, reducing raffinose and stachyose biosynthesis is considered as a key quality trait goal in soy food and feed industries. The objective of this study was to identify genomic regions containing quantitative trait loci (QTL) controlling sucrose, raffinose, and stachyose in a set of 92 F5:7 recombinant inbred lines (RILs) derived from a cross between the lines “MD96-5722” and “Spencer” by using 5376 Single Nucleotide Polymorphism (SNP) markers from the Illumina Infinium SoySNP6K BeadChip array. Fourteen significant QTL were identified and mapped on eight different linkage groups (LGs) and chromosomes (Chr). Three QTL for seed sucrose content were identified on LGs N (Chr3), K (Chr9), and E (Chr15). Seven QTL were identified for raffinose content on LGs D1a (Chr1), N (Chr3), C2 (Chr6), K (Chr9), B2 (Chr14), and J (Chr16). Four QTL for stachyose content were identified on LG D1a (Chr1), C2 (Chr6), H (Chr12), and B2 (Chr14). Selection for beneficial alleles of these QTLs could facilitate breeding strategies to develop soybean lines with higher concentrations of sucrose and lower levels of raffinose and stachyose.
文摘Soybean (Glycine max L. Merr.) adaptation to new environments has been hard to predict based on maturity group. The aim of this study was to evaluate the performance of 14 soybean genotypes, from the Soybean Breeding Program of the Federal University of Uberlandia, in their adaptive capacity and seed yield stability at 3 locations and 2 growing seasons. For the adaptability and stability analysis the Toler and Centroid methods were used;5 genotypic groups were identified in the first whereas 4 groups were identified in the latter. By the Toler method group A was composed by 4 genotypes, UFU-001, UFU-003, UFU-0010, and UFU-001. They showed a convex pattern of adaptability and stability. In contrast, the genotypes UFU-008 and UFU-0013 were classified in Group E with a concave pattern of adaptability and stability. Regarding results from the Centroid method, the Genotype UFU-002, with higher seed yield than average, was the only genotype in Ideotype VI with moderate adaptability to favorable environments. In contrast, 10 genotypes were included in the Ideotype V, of medium general adaptability. The genotypes UFU-001, UFU-002, UFU-006, UFU-0010, and UFU-0011 were recommended for use in the Brazilian Cerrado growing region. These genotypes had high seed yield potential in high quality environments.
文摘Soybean isoflavones compounds such as genistein, daidzein, and glycitein have numerous human health benefits including the reduction of risks of cardiovascular diseases, breast and prostate cancers, and menaupose symptoms in women. Understanding the genetic and environmental control of isoflavones accumulation is of great importance for developing new cultivars with high amounts of seed isoflavones. This study was conducted to analyze the effect of row spacing (25 cm vs. 50 cm) on seed isoflavones accumulation using a recombinant inbred line (RIL) population derived from the cross of PI 438489B and “Hamilton” (PIxH, n = 50). The two row spaces generated plant densities of 250,000 plants/ha and 90,000 plants/ha, respectively. Significant differences in soybean seed isoflavones (daidzein, genistein and glycitein) contents have been observed between plants grown in the two different plant densities. The mean daidzein content was 0.03458 μg·g-1 in plants grown in 50 cm row spaces (low plant density), which was significantly higher than its content (0.03019 μg·g-1) in plants grown in 25 cm row spaces (high plant density). Similarly, the mean glycitein content in plants grown in 50 cm row spaces (0.01905 μg·g-1) was significantly higher than its content in plants grown in 25 cm row spaces (0.00498 μg·g-1. Also, the mean genistein content in plants grown in 50 cm row spaces (0.01466 μg·g-1) was higher than its content in plants grown in 25 cm row spaces (0.00831 μg·g-1). These preliminary results are important in guiding farmers and breeders on choosing the best row spaces to grow soybean plants in order to optimize isoflavones contents. Further studies are needed to understand the correlation between seed isoflavones contents and other agronomic traits such as seed yield, protein, and oil contents.
文摘The aim of this research was determine the ma- ximum application uniformity of closed circuit trickle irrigation systems designs. Laboratory tests carried out for Two types of closed circuits: a) One manifold for lateral lines or Closed circuits with One Manifold of Trikle Irrigation System (COMTIS);b) Closed circuits with Two Manifolds of Trikle Irrigation System (CTMTIS), and c) Traditional Trikle Irrigation System (TTIS) as a control. Three lengths of lateral lines were used, 40, 60, and 80 meters. PE tubes lateral lines: 16 mm diameter;30 cm emitters distance, and GR built-in emitters 4 lph when operating pressure 1 bar. Experiments were conducted at the Agric. Eng. Res. Inst., ARC, MALR, Egypt. With COMTIS the emitter flow rate was 4.07, 3.51, and 3.59 lph compared to 4.18, 3.72, and 3.71 lph with CTMTIS and 3.21, 2.6, and 2.16 lph with TTIS (lateral lengths 40, 60, and 80 meters respectively). Uniformity varied widely within individual lateral lengths and between circuit types. Under CTMTIS uniformity values were 97.74, 95.14, and 92.03 %;with COMTIS they were 95.73, 89.45, and 83.25 %;and with TTIS they were 88.27, 84.73, and 80.53 % (for lateral lengths 40, 60, 80 meters respectively). The greatest uniformity was observed under CTMTIS and COMTIS when using the shortest lateral length 40 meters, then lateral length 60 meters, while the lowest value was observed when using lateral length 80 meters this result depends on the physical and hydraulic characteristics of the emitter and lateral line. CTMTIS was more uniform than either COMTIS or TTIS. Friction losses were decreased with CTMTIS in the emitter laterals at lengths 40 meters compared to TTIS and COMTIS. Therefore, differences may be related to increased friction losses when using TDIS and COMDIS.