This paper deals with the experimental quantification of the unsteady effects of the interactions between rotor and stator rows in high speed compressors. Due to the fact that the levels of the periodic fluctuations a...This paper deals with the experimental quantification of the unsteady effects of the interactions between rotor and stator rows in high speed compressors. Due to the fact that the levels of the periodic fluctuations arising from the unsteady interaction may be low compared with the random fluctuations arising from the measurement uncertainties, it is crucial to minimize the errors inherent to the used technique. The first part of the paper concentrates on technical details relative to the experimental process. The second part is devoted to the data post-processing. Two tools for analysing the rotor-stator interactions are presented. The first tool is based on a decomposition of the flow field which was initially introduced to solve numerical problems when attempting to calculate the flow field in a multi-row configuration. The second tool is based on a spectral analysis of the signal, that qualifies the interaction in a sense of circumferential spinning lobes. Experimental results obtained within both an axial and a centrifugal high speed compressors are used to illustrate the data processing. In both cases, the effects of the unsteady interaction are quantified.展开更多
文摘This paper deals with the experimental quantification of the unsteady effects of the interactions between rotor and stator rows in high speed compressors. Due to the fact that the levels of the periodic fluctuations arising from the unsteady interaction may be low compared with the random fluctuations arising from the measurement uncertainties, it is crucial to minimize the errors inherent to the used technique. The first part of the paper concentrates on technical details relative to the experimental process. The second part is devoted to the data post-processing. Two tools for analysing the rotor-stator interactions are presented. The first tool is based on a decomposition of the flow field which was initially introduced to solve numerical problems when attempting to calculate the flow field in a multi-row configuration. The second tool is based on a spectral analysis of the signal, that qualifies the interaction in a sense of circumferential spinning lobes. Experimental results obtained within both an axial and a centrifugal high speed compressors are used to illustrate the data processing. In both cases, the effects of the unsteady interaction are quantified.