Background: Functional electrically stimulated (FES)-arm ergometry has been shown to increase peak power output and aerobic capacity in individuals with cervical SCI. However, the functional benefits remain unknown. O...Background: Functional electrically stimulated (FES)-arm ergometry has been shown to increase peak power output and aerobic capacity in individuals with cervical SCI. However, the functional benefits remain unknown. Objective: To determine the effects of FES-arm ergometry on exercise performance, upper limb function and resting cardiovascular function in individuals with tetraplegia. Methods: Five individuals (43.8 ± 15.4 years old) with SCI (C3-C5, AIS C-D, 14.0 ± 11.1 years post-injury) completed 12 weeks FES-arm ergometry. Exercise performance (time and distance to fatigue), perceived upper limb function [Capabilities of Upper Extremity Questionnaire (CUE), short form-Quadriplegia Index of Function Questionnaire (sf-QIF) and Spinal Cord Injury Spasticity Evaluation Tool (SCI-SET)] and resting mean arterial pressure (MAP) and heart rate (HR) were measured pre and post. Results: Following training, MAP significantly decreased (91.1 ± 14.0 to 87.7 ± 14.7 mmHg;p = 0.04), and there was a trend for an increased time to fatigue (804.6 ± 359.4 to 1483.8 ± 1110.2 sec;p = 0.08), distance to fatigue (3508.4 ± 3524.5 to 7412.6 ± 7773.1 m, p = 0.08) and the CUE scores pertaining to hand function (31.6 ± 12.8 to 38.0 ± 17.7;p = 0.07). Conclusion: Twelve-week FES-arm ergometry was associated with decreased resting MAP in individuals with tetraplegia, and may show promise as a means to increase exercise performance and hand function. Further research is required to verify these preliminary findings.展开更多
文摘Background: Functional electrically stimulated (FES)-arm ergometry has been shown to increase peak power output and aerobic capacity in individuals with cervical SCI. However, the functional benefits remain unknown. Objective: To determine the effects of FES-arm ergometry on exercise performance, upper limb function and resting cardiovascular function in individuals with tetraplegia. Methods: Five individuals (43.8 ± 15.4 years old) with SCI (C3-C5, AIS C-D, 14.0 ± 11.1 years post-injury) completed 12 weeks FES-arm ergometry. Exercise performance (time and distance to fatigue), perceived upper limb function [Capabilities of Upper Extremity Questionnaire (CUE), short form-Quadriplegia Index of Function Questionnaire (sf-QIF) and Spinal Cord Injury Spasticity Evaluation Tool (SCI-SET)] and resting mean arterial pressure (MAP) and heart rate (HR) were measured pre and post. Results: Following training, MAP significantly decreased (91.1 ± 14.0 to 87.7 ± 14.7 mmHg;p = 0.04), and there was a trend for an increased time to fatigue (804.6 ± 359.4 to 1483.8 ± 1110.2 sec;p = 0.08), distance to fatigue (3508.4 ± 3524.5 to 7412.6 ± 7773.1 m, p = 0.08) and the CUE scores pertaining to hand function (31.6 ± 12.8 to 38.0 ± 17.7;p = 0.07). Conclusion: Twelve-week FES-arm ergometry was associated with decreased resting MAP in individuals with tetraplegia, and may show promise as a means to increase exercise performance and hand function. Further research is required to verify these preliminary findings.