Sepsis has recently been defined as'life-threatening organ dysfunction caused by a dysregulated host response to infection'. A great amount of effort has been made to develop early treatments for sepsis throug...Sepsis has recently been defined as'life-threatening organ dysfunction caused by a dysregulated host response to infection'. A great amount of effort has been made to develop early treatments for sepsis through the Surviving Sepsis Campaign. There are similar but slightly different recommendations for the treatment of sepsis in the pediatric population. These international efforts have led to earlier diagnosis and treatments for sepsis that have led to improvements in survival. Sepsis is also the leading cause of death in the burn patient but most clinical sepsis studies have excluded burns. The reason for the exclusion is that the sepsis found in burn patients is different than that of the general population. The early treatment strategies, such as those directed by the Surviving Sepsis Campaign, focus on patients presenting to hospitals with recent signs of infection. Burn patients lose their primary barrier to infection, the skin, and thus the risk of infection persists as long as that barrier is absent. Efforts have been made to define sepsis, septic shock and infection in the burn population but there is constant need for revisions. One focus of this review is to discuss the differences in burn sepsis versus sepsis of the general population. Children often have profound responses to sepsis but can also make remarkable recoveries. This review will also explore problems specific to pediatric burns. The treatment of burns requires a continuous vigilance to watch for the subtle early signs of sepsis and then expeditious initiation of aggressive therapy. Strategies covering optimal management of pediatric burn sepsis will also be summarized.展开更多
Background:Dysnatremias are associated with increased mortality in critically ill patients. Hypernatremia in burn patients is also associated with poor survival. Based on these findings, we hypothesized that high plas...Background:Dysnatremias are associated with increased mortality in critically ill patients. Hypernatremia in burn patients is also associated with poor survival. Based on these findings, we hypothesized that high plasma sodium variability is a marker for increased mortality in severely burn-injured patients. Methods:We performed a retrospective review of adult burn patients with a burn injury of 15%total body surface area (TBSA) or greater from 2010 to 2014. All patients included in the study had at least three serum sodium levels checked during admission. We used multivariate logistic regression analysis to determine if hypernatremia, hyponatremia, or sodium variability independently increased the odds ratio (OR) for death. Results:Two hundred twelve patients met entry criteria. Mean age and%TBSA for the study was 45 ± 18 years and 32 ± 19%. Twenty-nine patients died for a mortality rate of 14%. Serum sodium was measured 10,310 times overall. The median number of serum sodium measurements per patient was 22. Non-survivors were older (59 ± 19 vs. 42 ± 16 years) and suffered from a more severe burn injury (50 ± 25%vs. 29 ± 16%TBSA). While mean sodium was significantly higher for non-survivors (138 ± 3 milliequivalents/liter (meq/l)) than for survivors (135 ± 2 meq/l), mean sodium levels remained within the laboratory reference range (135 to 145 meq/l) for both groups. Non-survivors had a significantly higher median number of hypernatremic (>145 meq/l) measurements (2 vs. 0). Coefficient of variation (CV) was significantly higher in non-survivors (2.85 ± 1.1) than survivors (2.0 ± 0.7). Adjusting for TBSA, age, ventilator days, and intensive care unit (ICU) stay, a higher CV of sodium measurements was associated with mortality (OR 5.8 (95%confidence interval (CI) 1.5 to 22)). Additionally, large variation in sodium ranges in the first 10 days of admission may be associated with increased mortality (OR 1.35 (95%CI 1.06 to1.7)). Conclusions:Increased variability in plasma sodium may be associated with death in severely burned patients.展开更多
文摘Sepsis has recently been defined as'life-threatening organ dysfunction caused by a dysregulated host response to infection'. A great amount of effort has been made to develop early treatments for sepsis through the Surviving Sepsis Campaign. There are similar but slightly different recommendations for the treatment of sepsis in the pediatric population. These international efforts have led to earlier diagnosis and treatments for sepsis that have led to improvements in survival. Sepsis is also the leading cause of death in the burn patient but most clinical sepsis studies have excluded burns. The reason for the exclusion is that the sepsis found in burn patients is different than that of the general population. The early treatment strategies, such as those directed by the Surviving Sepsis Campaign, focus on patients presenting to hospitals with recent signs of infection. Burn patients lose their primary barrier to infection, the skin, and thus the risk of infection persists as long as that barrier is absent. Efforts have been made to define sepsis, septic shock and infection in the burn population but there is constant need for revisions. One focus of this review is to discuss the differences in burn sepsis versus sepsis of the general population. Children often have profound responses to sepsis but can also make remarkable recoveries. This review will also explore problems specific to pediatric burns. The treatment of burns requires a continuous vigilance to watch for the subtle early signs of sepsis and then expeditious initiation of aggressive therapy. Strategies covering optimal management of pediatric burn sepsis will also be summarized.
文摘Background:Dysnatremias are associated with increased mortality in critically ill patients. Hypernatremia in burn patients is also associated with poor survival. Based on these findings, we hypothesized that high plasma sodium variability is a marker for increased mortality in severely burn-injured patients. Methods:We performed a retrospective review of adult burn patients with a burn injury of 15%total body surface area (TBSA) or greater from 2010 to 2014. All patients included in the study had at least three serum sodium levels checked during admission. We used multivariate logistic regression analysis to determine if hypernatremia, hyponatremia, or sodium variability independently increased the odds ratio (OR) for death. Results:Two hundred twelve patients met entry criteria. Mean age and%TBSA for the study was 45 ± 18 years and 32 ± 19%. Twenty-nine patients died for a mortality rate of 14%. Serum sodium was measured 10,310 times overall. The median number of serum sodium measurements per patient was 22. Non-survivors were older (59 ± 19 vs. 42 ± 16 years) and suffered from a more severe burn injury (50 ± 25%vs. 29 ± 16%TBSA). While mean sodium was significantly higher for non-survivors (138 ± 3 milliequivalents/liter (meq/l)) than for survivors (135 ± 2 meq/l), mean sodium levels remained within the laboratory reference range (135 to 145 meq/l) for both groups. Non-survivors had a significantly higher median number of hypernatremic (>145 meq/l) measurements (2 vs. 0). Coefficient of variation (CV) was significantly higher in non-survivors (2.85 ± 1.1) than survivors (2.0 ± 0.7). Adjusting for TBSA, age, ventilator days, and intensive care unit (ICU) stay, a higher CV of sodium measurements was associated with mortality (OR 5.8 (95%confidence interval (CI) 1.5 to 22)). Additionally, large variation in sodium ranges in the first 10 days of admission may be associated with increased mortality (OR 1.35 (95%CI 1.06 to1.7)). Conclusions:Increased variability in plasma sodium may be associated with death in severely burned patients.