Nanoporous metals show promising performances in electrochemical catalysis.In this paper,we report a self-supporting bimetallic porous heterogeneous indium/copper structure synthesized with a eutectic gallium-indium(E...Nanoporous metals show promising performances in electrochemical catalysis.In this paper,we report a self-supporting bimetallic porous heterogeneous indium/copper structure synthesized with a eutectic gallium-indium(EGaIn)material on a copper substrate.This nanoporous copper-indium heterostructure catalyst exhibits excellent performance in the reduction of carbon dioxide to syngas.The ratio of H_(2)/CO is tunable from 0.47 to 2.0 by changing working potentials.The catalyst is highly stable,showing 96%maintenance of the current density after a 70-h continuous test.Density functional theory calculations reveal that the indium/copper interface induces charge redistribution within the copper surface,leading to the formation of two distinct active sites,namely,Cu^(δ)and Cu0,and enabling a high-performance generation of CO and H_(2).This work provides a new strategy for obtaining self-supporting nanoporous metal electrode catalysts.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB3502200,2018YFB0703600,and 2019YFA0704901)the National Natural Science Foundation of China(52172216,92163212,and 12174242)+4 种基金the Key Research Project of Zhejiang Laboratory(2021PE0AC02)the support from Guangdong Innovation Research Team Project(2017ZT07C062)Guangdong Provincial Key-Lab program(2019B030301001)Shenzhen Municipal Key-Lab program(ZDSYS20190902092905285)supported by the Center for Computational Science and Engineering at Southern University of Science and Technology。
基金the National Natural Science Foundation of China(51872116 and 12034002)the Project for Self-Innovation Capability Construction of Jilin Province Development and Reform Commission(2021C026)+2 种基金the Program for JLU Science and Technology Innovative Research Team(JLUSTIRT-2017TD-09)the Science and Technology Development Program of Jilin Province(20190201233JC)the Fundamental Research Funds for the Central Universities.The work was carried out at LvLiang Cloud Computing Center of China,and the calculations were performed on TianHe-2.
文摘Nanoporous metals show promising performances in electrochemical catalysis.In this paper,we report a self-supporting bimetallic porous heterogeneous indium/copper structure synthesized with a eutectic gallium-indium(EGaIn)material on a copper substrate.This nanoporous copper-indium heterostructure catalyst exhibits excellent performance in the reduction of carbon dioxide to syngas.The ratio of H_(2)/CO is tunable from 0.47 to 2.0 by changing working potentials.The catalyst is highly stable,showing 96%maintenance of the current density after a 70-h continuous test.Density functional theory calculations reveal that the indium/copper interface induces charge redistribution within the copper surface,leading to the formation of two distinct active sites,namely,Cu^(δ)and Cu0,and enabling a high-performance generation of CO and H_(2).This work provides a new strategy for obtaining self-supporting nanoporous metal electrode catalysts.