Reactive oxygen signaling regulates numerous biological processes,including stress responses in plants.Redox sensors transduce reactive oxygen signals into cellular responses.Here,we present biochemical evidence that ...Reactive oxygen signaling regulates numerous biological processes,including stress responses in plants.Redox sensors transduce reactive oxygen signals into cellular responses.Here,we present biochemical evidence that a plant quiescin sulfhydryl oxidase homolog(QSOX1)is a redox sensor that negatively regulates plant immunity against a bacterial pathogen.The expression level of QSOX1 is inversely correlated with pathogen-induced reactive oxygen species(ROS)accumulation.Interestingly,QSOX1 both senses and regulates ROS levels by interactingn with and mediating redox regulation of S-nitrosoglutathione reductase,which,consistent with previous findings,influences reactive nitrogen-mediated regulation of ROS generation.Collectively,our data indicate that QSOX1 is a redox sensorthat negatively regulates plant immunity by linking reactive oxygen and reactive nitrogen signaling to limit ROS production.展开更多
Recent advances in genomic and post-genomic technologies have provided the opportu- nity to generate a previously unimaginable amount of information. However, biological knowledge is still needed to improve the unders...Recent advances in genomic and post-genomic technologies have provided the opportu- nity to generate a previously unimaginable amount of information. However, biological knowledge is still needed to improve the understanding of complex mechanisms such as plant immune responses. Better knowledge of this process could improve crop production and management. Here, we used holistic analysis to combine our own microarray and RNA-seq data with public genomic data from Arabidopsis and cassava in order to acquire biological knowledge about the relationships between proteins encoded by immunity-related genes (IRGs) and other genes. This approach was based on a kernel method adapted for the construction of gene networks. The obtained results allowed us to propose a list of new IRGs. A putative function in the immunity pathway was predicted for the new IRGs. The analysis of networks revealed that our predicted IRGs are either well documented or recognized in previous co-expression studies. In addition to robust relationships between IRGs, there is evidence suggesting that other cellular processes may be also strongly related to immunity.展开更多
基金supported by grants from the"BioGreen21 Agri-Tech Inovation Program(project no.PJ015824 to S.Y.L.and PJ0159992021 to M.G.K.)",Rural Development Administration(RDA),South Koreaby the Basic Science Research Program through the National Research Foundation(NRF)of South Korea funded by the Ministry of Education(NRF-2018R1A6A3A11049525 to H.B.C.).
文摘Reactive oxygen signaling regulates numerous biological processes,including stress responses in plants.Redox sensors transduce reactive oxygen signals into cellular responses.Here,we present biochemical evidence that a plant quiescin sulfhydryl oxidase homolog(QSOX1)is a redox sensor that negatively regulates plant immunity against a bacterial pathogen.The expression level of QSOX1 is inversely correlated with pathogen-induced reactive oxygen species(ROS)accumulation.Interestingly,QSOX1 both senses and regulates ROS levels by interactingn with and mediating redox regulation of S-nitrosoglutathione reductase,which,consistent with previous findings,influences reactive nitrogen-mediated regulation of ROS generation.Collectively,our data indicate that QSOX1 is a redox sensorthat negatively regulates plant immunity by linking reactive oxygen and reactive nitrogen signaling to limit ROS production.
基金financially supported by the Direccio'n de Investi-gacio'n Sede Bogota'of the Universidad Nacional de Colombia(Grant No.201010016738)
文摘Recent advances in genomic and post-genomic technologies have provided the opportu- nity to generate a previously unimaginable amount of information. However, biological knowledge is still needed to improve the understanding of complex mechanisms such as plant immune responses. Better knowledge of this process could improve crop production and management. Here, we used holistic analysis to combine our own microarray and RNA-seq data with public genomic data from Arabidopsis and cassava in order to acquire biological knowledge about the relationships between proteins encoded by immunity-related genes (IRGs) and other genes. This approach was based on a kernel method adapted for the construction of gene networks. The obtained results allowed us to propose a list of new IRGs. A putative function in the immunity pathway was predicted for the new IRGs. The analysis of networks revealed that our predicted IRGs are either well documented or recognized in previous co-expression studies. In addition to robust relationships between IRGs, there is evidence suggesting that other cellular processes may be also strongly related to immunity.