Tryptophan hydroxylase(TPH)catalyses L-tryptophan into 5-hydroxy-L-tryptophan,which is the first and ratelimiting step of serotonin(5-HT)biosynthesis.Earlier,we found that TPH2 up-regulated in the hippocampus of post...Tryptophan hydroxylase(TPH)catalyses L-tryptophan into 5-hydroxy-L-tryptophan,which is the first and ratelimiting step of serotonin(5-HT)biosynthesis.Earlier,we found that TPH2 up-regulated in the hippocampus of postnatal rats after the oral treatment of Bacopa monniera leaf extract containing the active compound bacosides.However,the knowledge about the interactions between bacosides with TPH is limited.In this study,we take advantage of in silico approach to understand the interaction of bacoside-TPH complex using three different docking algorithms such as HexDock,PatchDock and AutoDock.All these three algorithms showed that bacoside A and A3 well fit into the cavity consists of active sites.Further,our analysis revealed that major active compounds bacoside A3 and A interact with different residues of TPH through hydrogen bond.Interestingly,Tyr235,Thr265 and Glu317 are the key residues among them,but none of them are either at tryptophan or BH4 binding region.However,its note worthy to mention that Tyr 235 is a catalytic sensitive residue,Thr265 is present in the flexible loop region and Glu317 is known to interacts with Fe.Interactions with these residues may critically regulate TPH function and thus serotonin synthesis.Our study suggested that the interaction of bacosides(A3/A)with TPH might up-regulate its activity to elevate the biosynthesis of 5-HT,thereby enhances learning and memory formation.展开更多
文摘Tryptophan hydroxylase(TPH)catalyses L-tryptophan into 5-hydroxy-L-tryptophan,which is the first and ratelimiting step of serotonin(5-HT)biosynthesis.Earlier,we found that TPH2 up-regulated in the hippocampus of postnatal rats after the oral treatment of Bacopa monniera leaf extract containing the active compound bacosides.However,the knowledge about the interactions between bacosides with TPH is limited.In this study,we take advantage of in silico approach to understand the interaction of bacoside-TPH complex using three different docking algorithms such as HexDock,PatchDock and AutoDock.All these three algorithms showed that bacoside A and A3 well fit into the cavity consists of active sites.Further,our analysis revealed that major active compounds bacoside A3 and A interact with different residues of TPH through hydrogen bond.Interestingly,Tyr235,Thr265 and Glu317 are the key residues among them,but none of them are either at tryptophan or BH4 binding region.However,its note worthy to mention that Tyr 235 is a catalytic sensitive residue,Thr265 is present in the flexible loop region and Glu317 is known to interacts with Fe.Interactions with these residues may critically regulate TPH function and thus serotonin synthesis.Our study suggested that the interaction of bacosides(A3/A)with TPH might up-regulate its activity to elevate the biosynthesis of 5-HT,thereby enhances learning and memory formation.