This study introduces a novel image capture and lighting techniques using a cutting-edge hybrid MEMS scanner system designed for compact microscopic imaging.The scanner comprises a tapered optical fiber waveguide and ...This study introduces a novel image capture and lighting techniques using a cutting-edge hybrid MEMS scanner system designed for compact microscopic imaging.The scanner comprises a tapered optical fiber waveguide and innovative aerosol-jet printed PZT(lead zirconate titanate)bimorph push-pull actuators on a stainless-steel substrate,effectively addressing issues that are commonly associated with PZT on silicon substrates such as fracture and layer separation.By leveraging nonlinear vibration,the scanner achieves a spiral scan pattern from a single signal input,in addition to the expected two-dimensional scanning and target illumination from two phase-shifted inputs.This capability is further enhanced by a novel process to taper the optical fiber,which reduces illumination scattering and tunes the fiber to the resonant frequencies of the scanner.The precisely tapered tip enables large fields of view while maintaining independent 2-axis scanning through one-degree-of-freedom actuation.Experimental validation showcases the successful generation of a spiral scan pattern with a 60μm diameter scan area and a 10 Hz frame rate,effectively reconstructing scanned images of 5μm lines,cross patterns(15μm in length with a 5μm gap),and structures of a Psychodidae wing.展开更多
基金funded by the Ministry of Science and Technology,Taiwan,China(MOST 104-2218-E-007-026-MY3,MOST 107-2221-E-007-054-MY3,MOST 110-2221-E-007-069,and MOST 111-2221-E-007-101).
文摘This study introduces a novel image capture and lighting techniques using a cutting-edge hybrid MEMS scanner system designed for compact microscopic imaging.The scanner comprises a tapered optical fiber waveguide and innovative aerosol-jet printed PZT(lead zirconate titanate)bimorph push-pull actuators on a stainless-steel substrate,effectively addressing issues that are commonly associated with PZT on silicon substrates such as fracture and layer separation.By leveraging nonlinear vibration,the scanner achieves a spiral scan pattern from a single signal input,in addition to the expected two-dimensional scanning and target illumination from two phase-shifted inputs.This capability is further enhanced by a novel process to taper the optical fiber,which reduces illumination scattering and tunes the fiber to the resonant frequencies of the scanner.The precisely tapered tip enables large fields of view while maintaining independent 2-axis scanning through one-degree-of-freedom actuation.Experimental validation showcases the successful generation of a spiral scan pattern with a 60μm diameter scan area and a 10 Hz frame rate,effectively reconstructing scanned images of 5μm lines,cross patterns(15μm in length with a 5μm gap),and structures of a Psychodidae wing.