The purpose of this research is to find a method that can improve the cost and efficiency of sludge treatment. Currently, large amounts of sludge are produced every day, but sludge treatment is neither efficient nor p...The purpose of this research is to find a method that can improve the cost and efficiency of sludge treatment. Currently, large amounts of sludge are produced every day, but sludge treatment is neither efficient nor profitable. To improve the sludge treatment process, we proposed the method of using microwave technology to treat sludge. We hypothesized that using microwave technology, we can reduce the volume of the sludge up to 90%, and can save more energy and time comparing to the traditional methods that we are currently using to treat the sludge. To prove our hypothesis, we designed an experiment to compare the solid-liquid boundary height and the solid-liquid mass ratio of the sludge treated by the conventional method and the microwave technology. Prime temperature and time found for dewatering sludge are 70 Celsius degrees and five minutes. The results were rather surprising, as microwave heating demonstrated no significant advantage over conventional heating. The solid-liquid boundary height of sludge heated by conventional and by microwave methods are 22.34 mL and 22.56 mL;the solid-liquid mass ratio of sludge using conventional heating and microwave heating at 70 Celsius degrees are 14.28% and 14.55% (by separation with filter press), or 9.82% and 9.89% (by centrifugation). In conclusion, the difference is negligible.展开更多
文摘The purpose of this research is to find a method that can improve the cost and efficiency of sludge treatment. Currently, large amounts of sludge are produced every day, but sludge treatment is neither efficient nor profitable. To improve the sludge treatment process, we proposed the method of using microwave technology to treat sludge. We hypothesized that using microwave technology, we can reduce the volume of the sludge up to 90%, and can save more energy and time comparing to the traditional methods that we are currently using to treat the sludge. To prove our hypothesis, we designed an experiment to compare the solid-liquid boundary height and the solid-liquid mass ratio of the sludge treated by the conventional method and the microwave technology. Prime temperature and time found for dewatering sludge are 70 Celsius degrees and five minutes. The results were rather surprising, as microwave heating demonstrated no significant advantage over conventional heating. The solid-liquid boundary height of sludge heated by conventional and by microwave methods are 22.34 mL and 22.56 mL;the solid-liquid mass ratio of sludge using conventional heating and microwave heating at 70 Celsius degrees are 14.28% and 14.55% (by separation with filter press), or 9.82% and 9.89% (by centrifugation). In conclusion, the difference is negligible.