Waste heat recovery is one of the possible solutions to improve the efficiency of internal combustion engines.Instead of wasting the exhaust stream of an energy conversion system into the environment,its residual ener...Waste heat recovery is one of the possible solutions to improve the efficiency of internal combustion engines.Instead of wasting the exhaust stream of an energy conversion system into the environment,its residual energy content can be usefully recovered,for example in Organic Rankine Cycles(ORC).This technology has been largely consolidated in stationary power plants but not yet for mobile applications,such as road transport,due to the limitations in the layout and to the constraints on the size and weight of the ORC system.An ORC system installed on the exhaust line of a bus powered by a natural gas spark ignition engine has been investigated.The thermal power available at engine exhaust has been evaluated by measuring gas temperature and mass flow rate during real driving operation.The waste thermal power has been considered as heat input for the ORC plant simulation.A detailed heat exchanger model has been developed because it is a crucial component for the ORC performance.The exergy analysis of the ORC was performed comparing different working fluids:R601,R1233zd(E)and two zeotropic blends of the two organic pure fluids.The model allowed the evaluation of the ORC produced energy over the driving cycle and the potential benefit on the engine efficiency.展开更多
基金The authors gratefully acknowledge Universitàdegli studi della Campania“L.Vanvitelli”for funding the research project CHIMERA with V:ALERE 2019 grant。
文摘Waste heat recovery is one of the possible solutions to improve the efficiency of internal combustion engines.Instead of wasting the exhaust stream of an energy conversion system into the environment,its residual energy content can be usefully recovered,for example in Organic Rankine Cycles(ORC).This technology has been largely consolidated in stationary power plants but not yet for mobile applications,such as road transport,due to the limitations in the layout and to the constraints on the size and weight of the ORC system.An ORC system installed on the exhaust line of a bus powered by a natural gas spark ignition engine has been investigated.The thermal power available at engine exhaust has been evaluated by measuring gas temperature and mass flow rate during real driving operation.The waste thermal power has been considered as heat input for the ORC plant simulation.A detailed heat exchanger model has been developed because it is a crucial component for the ORC performance.The exergy analysis of the ORC was performed comparing different working fluids:R601,R1233zd(E)and two zeotropic blends of the two organic pure fluids.The model allowed the evaluation of the ORC produced energy over the driving cycle and the potential benefit on the engine efficiency.